Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T21:30:07.930Z Has data issue: false hasContentIssue false

The ultrastructure of the parasite—host interface of three tetraphyllidean tapeworms of the elasmobranch Raja naevus

Published online by Cambridge University Press:  06 April 2009

A. H. McVicar
Affiliation:
Zoology Department, University of Aberdeen-p1*

Extract

Ultrastructural examination of the parasite-host interface of three tetraphyllidean cestodes of Raja naevus (sectioned attached to the intestine) indicates that while the strobilar tegument of each closely follows the typical cestode pattern that of the bothridia has several modifications probably associated with attachment. Microtriches similar to those of the strobilum are absent, although small spines on Echeneibothrium sp. and Phyllobothrium piriei and wart-like structures on Acanthobothrium quadripartitum bothridia are considered to represent the osmiophilic tips of specialized microtriches. The bothridia of the three species have no apparent function in the absorption of food but evidence suggests that the apical pad of the myzorhynchus of Echeneibothrium is specialized for the uptake of nutrients directly from the submucosa of the host intestine to which it is applied. Attachment and sensory roles by the myzorhynchus are also indicated. Echeneibothrium and P. piriei bothridia severely damage the host mucosal surface, while those of A. quadripartitum do little harm. This difference is probably associated with the size, mobility and mode of attachment of the cestodes. There are indications that the bothridia of Echeneibothrium upset the metabolism of mucosal cells in the attachment region. The tips of the strobilar microtriches of A. quadripartitum are shown to function in the attachment of the strobilum to the host mucosa, and in the protection of the microthrix proximal surfaces by a filtering action.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baron, P. J., (1968). On the histology and ultrastructure of Cysticercus longicollis, the cysticercus of Taenia crassiceps Zeder, 1800 (Cestoda, Cyclophyllidea). Parasitology 58, 497513.CrossRefGoogle Scholar
Béguin, F., (1966). Etude au microscope électronique de la cuticle et de ses structures associées chez quelques cestodes. Essai d'histologie comparée. Zeitschrift für Zellforschung und Mikroscopische Anatomie (Abteilung Histochemie) 72, 3046.CrossRefGoogle Scholar
Bilquees, F. M., & Freeman, R. S., (1969). Histogenesis of the rostellum of Taenia crassiceps (Zeder, 1800) (Cestoda), with special reference to hook development. Canadian Journal of Zoology 47, 251–61.CrossRefGoogle Scholar
Chandler, A. C., (1943). Studies on the nutrition of tapeworms. Amercian Journal of Hygiene 37, 121–31.Google Scholar
Chandler, A. C., Read, C. P., & Nicholas, H. O., (1950). Observations on certain phases of nutrition and host-parasite relations of Hymenolepis diminuta in white rats. Journal of Parasitology 36, 523–33.CrossRefGoogle ScholarPubMed
Charles, G. H., & Orr, T. S. C., (1968). Comparative fine structure of outer tegument of Ligula intestinalis and Schistocephalus solidus. Experimental Parasitology 22, 137–47.CrossRefGoogle ScholarPubMed
Erasmus, D. A., (1957). Studies on phosphatase systems of cestodes. I. Studies on Taenia pisiformis (cysticercus and adult). Parasitology 47, 7080.CrossRefGoogle ScholarPubMed
Erasmus, D. A., (1967). The host-parasite interface of Cyathocotyle bushiensis Khan, 1962 (Trematoda: Strigeoidea). II. Electron microscope studies of the tegument. Journal of Parasitology 53, 703–13.CrossRefGoogle ScholarPubMed
Erasmus, D. A., (1969). Studies on the host-parasite interface of strigeoid trematodes. V. Regional differentiation of the adhesive organ of Apatemon gracilis minor Yamaguti, 1933. Parasitology 59, 245–56.CrossRefGoogle ScholarPubMed
Erasmus, D. A., (1970). The host-parasite interface of strigeoid trematodes. VII. Ultrastructural observations on the adhesive organ of Diplostomum phoxini Faust, 1918. Zeitschrift für Parasitenhunde 33, 211–24.Google ScholarPubMed
Erasmus, D. A., & Öhman, C. (1963). The structure and function of the adhesive organ in strigeid trematodes. Annals of the New York Academy of Sciences 113, 735.Google Scholar
Erasmus, D. A., & Öhman, C. (1965). Electron microscope studies of the gland cells and hostparasite interface of the adhesive organ of Cyathocotyle bushiensis Khan, 1962. Journal of Parasitology 51, 761–69.Google Scholar
Hampton, J. C., & Rosario, B. (1966). The attachment of protozoan parasites to intestinal epithelial cells of the mouse. Journal of Parasitology 52, 939–49.CrossRefGoogle Scholar
Jha, R. K., & Smyth, J. D., (1969). Echinococcus granulosus: Ultrastructure of microtriches. Experimental Parasitology 25, 232–44.CrossRefGoogle ScholarPubMed
Jones, A. W., & Tan, B. D., (1971). Effect of crowding upon growth and fecundity in the mouse bile duct tapeworm, Hymenolepis microstoma. Journal of Parasitology 57, 8893.Google Scholar
Lee, D. L., (1962). Studies on the function of the pseudosuekers and holdfast organ of Diplostomum phoxini Faust (Strigeida, Trematoda). Parasitology 52, 103–12.CrossRefGoogle Scholar
Lee, D. L., (1966). The structure and composition of the helminth cuticle. Advances in Parasitology 4, 187254.CrossRefGoogle ScholarPubMed
Lom, J., & Kozloff, E. N., (1968). Observations on the ultrastructure of the suetorial tube of ancistrocomid ciliates. Folia Parasitologica (Praha) 15, 291308.Google Scholar
Luft, J. H., (1961). Improvements in epoxy resin embedding methods. Journal of Biophysical and Biochemical Cytology 9, 409–14.CrossRefGoogle ScholarPubMed
Lumsden, R. D., (1966). Cytological studies on the absortive surfaces of cestodes. I. The fine structure of the strobilar integument. Zeitschrift für Parasitenkunde 27, 355–82.CrossRefGoogle Scholar
Messier, B., & Leblond, C. P., (1960). Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. American Journal of Anatomy 106, 247–85.CrossRefGoogle ScholarPubMed
Miller, R. B., (1946). Cestode parasitised by acanthocephalan. Science 103, 762.CrossRefGoogle Scholar
Morseth, D. J., (1966). The fine structure of the tegument of adult Echinococcus granulosus, Taenia hydatigena and Taenia pisiformis. Journal of Parasitology 52, 1074–85.CrossRefGoogle ScholarPubMed
Morseth, D. J., (1967). Observations on the fine structure of the nervous system of Echinococcus granulosus. Journal of Parasitology 53, 492500.Google Scholar
Mount, P. M., (1970). Histogenesis of the rostellar hooks of Taenia crassiceps (Zeder, 1800). (Cestoda). Journal of Parasitology 56, 947–61.Google Scholar
Race, G. J., Labsh, J. E. Jr, Esch, G. W., & Martin, J. H., (1966). A study of the adult stage of Taenia multiceps (Multiceps serialis) by electron microscopy. Journal of the Elisha Mitchell Scientific Society 82, 4457.Google Scholar
Read, C. P., (1950). The acquisition of isotopically labelled inorganic phosphate by the tapeworm, Hymenolepis diminuta, with some remarks on the host-parasite relationship. Journal of Parasitology 36, 3440.CrossRefGoogle ScholarPubMed
Read, C. P., (1966). Nutrition of intestinal helminths. In Biology of Parasites (ed. Soulsby, E. J. L.), pp. 101–26. New York: Academic Press Inc.Google Scholar
Read, C. P., Douglas, L. T., & Simmons, J. E. Jr, (1959). Urea and osmotic properties of tapeworms from elasmobranchs. Experimental Parasitology 8, 5875.Google Scholar
Read, C. P., Simmons, J. E. Jr, Campbell, J. W., & Rothman, A. H., (1960). Permeation and membrane transport in parasitism. Studies on a tapeworm-elasmobranch symbiosis. Biological Bulletin, Woods Hole 119, 120–33.Google Scholar
Rees, G., (1967). Pathogenesis of adult cestodes. Helminthological Abstracts 36, 123.Google Scholar
Rees, G., & Williams, H. H., (1965). The functional morphology of the scolex and the genitalia of Acanthobothrium coronatum (Rud.) (Cestoda: Tetraphyllidea). Parasitology 55, 617–51.CrossRefGoogle ScholarPubMed
Reynolds, E. S., (1963). The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology 17, 208–12.Google Scholar
Rothman, A. H., (1959). The physiology of tapeworms, correlated to structures seen with the electron microscope. Journal of Parasitology 45 (suppl.), 28.Google Scholar
Rothman, A. H., (1963). Electron microscope studies of tapeworms: the surface structures of Hymenolepis diminuta (Rudolphi, 1819) Blanchard, 1891. Transactions of the American Microscopical Society 82, 2230.Google Scholar
Smyth, J. D., (1967). Studies on tapeworm physiology. XI. In vitro cultivation of Echinococcus granulosus from the protoscolex to the strobilate stage. Parasitology 57, 111–33.CrossRefGoogle Scholar
Smyth, J. D., (1969). The Physiology of Cestodes. Edinburgh: Oliver and Boyd. 279 pp.Google Scholar
Smyth, J. D., Howkins, A. B., & Barton, M., (1966). Factors controlling the differentiation of the hydatid organism, Echinococcus granulosus, into the cystic or strobilar stages in vitro. Nature 211, 1374–77.Google Scholar
Threadgold, L. T., (1962). An electron microscope study of the tegument and associated structures of Dipylidium caninum. Quarterly Journal of Microscopical Science 103, 135–40.Google Scholar
Vickers, T., (1962). A study of the intestinal epithelium of the goldfish Carassius auratus: its normal structure, the dynamics of cell replacement, and the changes induced by salts of cobalt and manganese. Quarterly Journal of Microscopical Science 103, 93110.Google Scholar
Williams, H. H., (1960). The intestine in members of the genus Raja and host-specificity in the Tetraphyllidea. Nature 188, 514–16.Google Scholar
Williams, H. H., (1961). Observations on Echeneibothrium maculatum (Cestoda: Tetraphyllidea). Journal of the Marine Biological Association of the United Kingdom 41, 631–52.CrossRefGoogle Scholar
Williams, H. H., (1966). The ecology, functional morphology and taxonomy of Echeneibothrium Beneden, 1849 (Cestoda: Tetraphyllidea), a revision of the genus and comments on Discobothrium Beneden, 1870, Pseudanthrobothrium Baer, 1956, and Phormobothrium Alexander, 1963. Parasitology 56, 227–85.Google Scholar
Williams, H. H., (1968 a). Acanthobothrium quadripartitum sp.nov. (Cestoda: Tetraphyllidea) from Raja naevus in the North Sea and English Channel. Parasitology 58, 105–10.CrossRefGoogle ScholarPubMed
Williams, H. H., (1968 b). The taxonomy, ecology and host-specificity of some Phyllobothriidae (Cestoda: Tetraphyllidea), a critical revision of Phyllobothrium Beneden, 1849 and comments on some allied genera. Philosophical Transactions of the Royal Society of London B 253, 231307.Google Scholar
Williams, H. H., (1968 c). Phyllobothrium piriei sp.nov. (Cestoda: Tetraphyllidea) from Raja naevus with a comment on its habit and mode of attachment. Parasitology 58, 929–37.CrossRefGoogle Scholar
Williams, H. H., (1969). The genus Acanthobothrium Beneden, 1849 (Cestoda: Tetraphyllidea). Nytt Magasin for Zoologi 17, 156.Google Scholar
Williams, H. H., Mcvicar, A. H., & Ralph, R., (1970). The alimentary canal of fish as an environment for helminth parasites. Symposia of the British Society for Parasitology 8, 4377.Google Scholar
Yamane, Y., (1968). On the fine structure of Diphyllobothrium erinacei with special reference to the tegument. Yonago Acta medica 12, 169–81.Google Scholar