Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T08:40:17.807Z Has data issue: false hasContentIssue false

A trypanosome species isolated from naturally infected Haemaphysalis hystricis ticks in Kagoshima Prefecture, Japan

Published online by Cambridge University Press:  19 February 2007

O. M. M. THEKISOE
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
T. HONDA
Affiliation:
Kagoshima Prefectural Center for Environmental Research and Public Health, Kagoshima, 892-0853, Japan
H. FUJITA
Affiliation:
Ohara Research Laboratory, Ohara General Hospital, Fukushima, 960-0915, Japan
B. BATTSETSEG
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
T. HATTA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
K. FUJISAKI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
C. SUGIMOTO
Affiliation:
Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
N. INOUE*
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
*
*Corresponding author: National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan. Tel: +81 155 49 5647. Fax: +81 155 49 5643. E-mail: [email protected]

Summary

Common arthropod vectors for trypanosomes are flies, fleas and bugs. This study reports on an unknown trypanosome species isolated from naturally infected Haemaphysalis hystricis ticks, hereby, referred to as Trypanosoma KG1 isolate. The parasite has been successfully cultured in vitro with L929 or HEK 293T cell line as feeder cells. This trypanosome cannot survive in vitro without feeder cells. Following experimental infections of ticks, the trypomastigote-like and the epimastigote-like forms of this trypanosome could be detected by Giemsa-stained smears of the midgut and salivary glands of Ornithodoros moubata ticks which were made to feed on a culturing medium containing Trypanosoma KG1 isolate through an artificial membrane. Trypanosoma KG1 isolate could also be detected from Giemsa-stained smears of the haemolymph up to 30 days post-inoculation into the O. moubata haemocoel. Trypanosoma KG1 isolate cannot be propagated in laboratory animals including mice, rats, rabbits and sheep. A phylogenetic tree constructed with the 18S rRNA gene indicates that Trypanosoma KG1 is a member of the stercorarian trypanosomes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brun, R., Hecker, H. and Lun, Z-R. (1998). Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship (a review). Veterinary Parasitology 79, 95107.CrossRefGoogle Scholar
Cao, W-C., Gao, Y-M., Zhang, P-H., Zhang, X-T., Dai, Q-H., Dumler, J. S., Fang, L-Q. and Yang, H. (2000). Identification of Ehrlichia chaffensis by nested PCR in ticks from Southern China. Journal of Clinical Microbiology 38, 27782780.CrossRefGoogle Scholar
Countway, P. D., Cast, R. J., Savai, P. and Caron, D. A. (2005). Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. The Journal of Eukaryotic Microbiology 52, 95106.Google Scholar
Coutinho, M. T. Z., Bueno, L. L., Sterzik, A., Fujiwara, R. T., Bolteho, J. R., De Maria, M., Genaro, O. and Linardi, P. M. (2005). Participation of Rhipicephalus sanguineus (Acari: Ixodidae) in the epidemiology of canine visceral leishmaniasis. Veterinary Parasitology 128, 149155.CrossRefGoogle ScholarPubMed
Cox, A., Tilley, A., McOdimba, F., Fyfe, J., Eisler, M., Hide, G. and Welburn, S. (2005). A PCR based assay for detection and differentiation of African trypanosome species in blood. Experimental Parasitology 111, 2429.Google Scholar
Desquesness, M., Ravel, S. and Guny, G. (2002). PCR identification of Trypanosoma lewisi, a common parasite of laboratory rats. Kinetoplastid Biology and Disease 1, 16.CrossRefGoogle Scholar
Desquesnes, M. and Davila, A. M. R. (2002). Applications of PCR-based tools for detection and identification of animal trypanosomes: a review and perspectives. Veterinary Parasitology 109, 213231.Google Scholar
Donelson, J. E. (2003). Antigenic variation and the African trypanosome genome. Acta Tropica 85, 391404.Google Scholar
el Kady, G. M. (1998). Protozoal parasites in the tick species infesting camels in Sinai Peninsula. Journal of the Egyptian Society of Parasitology 28, 765766.Google Scholar
Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368376.CrossRefGoogle ScholarPubMed
Felsenstein, J. and Churchill, G. A. (1996). A Hidden Markov model approach to variation among sites in rate of evolution. Molecular and Biological Evolution 13, 93104.CrossRefGoogle ScholarPubMed
Gibson, W. (2003). Species concepts for trypanosomes: from morphological to molecular definitions? Kinetoplastid Biology and Disease 2, 16.CrossRefGoogle ScholarPubMed
Haag, J., O'Huigin, C. and Overath, P. (1998). The molecular phylogeny of trypanosomes: evidence for an early divergence of the salivaria. Molecular and Biochemical Parasitology 91, 3749.Google Scholar
Hamilton, P. B., Steven, J. R., Gaunt, M. W., Gidley, J. and Gibson, W. C. (2004). Trypanosomes are monophyletic: evidence from genes for glyceraldehydes phosphate dehydrogenase and small subunit ribosomal RNA. International Journal for Parasitology 34, 13931404.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1972). The Trypanosomes of Mammals, 1st Edn. Blackwell Scientific Publications, Oxford and Edingburgh.Google Scholar
Honda, T., Fujita, H., Kuramoto, T., Watanabe, Y. and Takada, N. (2006). A record on Trypanosomatidae protozoa isolated from a Haemaphysalis hystricis tick in Kagoshima Prefecture, Japan. Annual Report of Ohara General Hospital 46, 1113.Google Scholar
Hughes, A. and Piontkivska, H. (2003 a). Phylogeny of Trypanosomatidae and Bodonidae (Kinetoplastida) based on 18S rRNA: Evidence for paraphyly of Trypanosoma and six other genera. Molecular Biology and Evolution 20, 644652.Google Scholar
Hughes, A. L. and Piontkivska, H. (2003 b). Molecular phylogenetics of Trypanosomatidae: contrasting results from 18S rRNA and protein phylogenies. Kinetoplastid Biology and Disease 2, 15.Google Scholar
Karbowiak, G. and Wita, I. (2004). Trypanosoma (Herpetosoma) grosi kosewiense subsp. n., the parasite of the yellow-necked mouse Apodemus flavicollis (Melchior, 1834). Acta Protozoologica 43, 173178.Google Scholar
Kuboki, N., Inoue, N., Sakurai, T., Di Cello, F., Grab, D. J., Suzuki, H., Sugimoto, C. and Igarashi, I. (2003). Loop-mediated isothermal amplification (LAMP) for detection of African trypanosomes. Journal of Clinical Microbiology 38, 27782780.Google Scholar
Latif, A. A., Bakheit, M. A., Mohamed, A. E. and Zweygarth, E. (2004). High infection rates of the tick Hyalomma anatolicum anatolicum with Trypanosoma theileri. The Onderstepoort Journal of Veterinary Research 71, 251256.CrossRefGoogle ScholarPubMed
Mackerras, M. J. (1959). The haematozoa of Australian mammals. Australian Journal of Zoology 7, 105135.Google Scholar
Mahara, F. (1997). Japanese Spotted Fever: Report of 31 cases and review of the literature. Emerging Infectious Diseases 3, 105111.CrossRefGoogle ScholarPubMed
Morzaria, S. P., Latif, A. A., Jongejan, J. and Walker, A. R. (1986). Transmission of Trypanosoma sp. to cattle by the tick Hyalomma anatolicum anatolicum. Veterinary Parasitology 19, 1321.Google Scholar
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28, IVII.Google Scholar
Noyes, H. A., Stevens, J. R., Teixeira, M., Phelan, J. and Holtz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. International Journal for Parasitology 29, 331339.Google Scholar
Parola, P., Cornet, J-P., Sanogo, Y. O., Miller, R. S., Van Thien, H., Gonzalez, J-P., Raoult, D., Telford, S. R. III, and Wongsrichanalai, C. (2003). Detection of Ehrlichia spp., Anaplasma spp., Rickettsia spp. and other Eubacteria in ticks from the Thai-Myanmar border and Vietnam. Journal of Clinical Microbiology 41, 16001608.CrossRefGoogle ScholarPubMed
Ravel, S., Grebaut, P., Cuisance, D. and Guny, G. (2003). Monitoring the development status of Trypanosoma brucei gambiense in the tsetse fly by means of PCR analysis of anal and saliva drops. Acta Tropica 88, 161165.Google Scholar
Sambrook, J. and Russell, D. W. (2001). Preparation and analysis of eukaryotic genomic DNA. In Molecular Cloning: A Laboratory Manual, 3rd Edn. (ed. Sambrook, J. & Russell, D. W.), pp. 6.16.30. Cold Spring Harbor Laboratory Press, New York.Google Scholar
Sato, H., Ishita, K., Matsuo, K., Inaba, T., Kamiya, H. and Ito, M. (2003). Persistent infection of Mongolian jirds with a non-pathogenic trypanosome, Trypanosoma (Herpetosoma) grosi. Parasitology 127, 357363.CrossRefGoogle ScholarPubMed
Stevens, J. R. and Brisse, S. (2004). Systematics of trypanosomes of medical and veterinary importance. In The Trypanosomiasis (ed. Maudlin, I.Holmes, P. H. and Miles, M. A.), pp. 123. CABI Publishing, UK.Google Scholar
Thekisoe, O. M. M., Inoue, N., Kuboki, N., Tuntasuvan, D., Bunnoy, W., Borisutsuwan, S., Igarashi, I. and Sugimoto, C. (2005). Evaluation of loop-mediated isothermal amplification (LAMP), PCR and parasitological tests for detection of Trypanosoma evansi in experimentally infected pigs. Veterinary Parasitology 130, 327330.Google Scholar
Waladde, S. M., Young, A. S. and Morzaria, S. P. (1996). Artificial feeding of ixodid ticks. Parasitology Today 12, 272278.CrossRefGoogle ScholarPubMed
Yamaguti, N., Tipton, V. J., Keegan, H. L. and Toshioka, S. (1971). Ticks of Japan, Korea, and the Ryuku Islands. Brigham Young University Science Bulletin 15, 7783.Google Scholar
Zarlenga, D. S. and Higgins, J. (2001). PCR as a diagnostic and quantitative technique in veterinary parasitology. Veterinary Parasitology 101, 215230.Google Scholar
Supplementary material: File

Thekisoe Supplementary Material

Figure. S1

Download Thekisoe Supplementary Material(File)
File 43.5 KB
Supplementary material: File

Thekisoe Supplementary Material

Figure. S2

Download Thekisoe Supplementary Material(File)
File 62.6 KB