Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T20:57:34.481Z Has data issue: false hasContentIssue false

Trypanosoma cruzi heparin-binding proteins present a flagellar membrane localization and serine proteinase activity

Published online by Cambridge University Press:  14 September 2012

F. O. R. OLIVEIRA-JR
Affiliation:
Laboratório de Ultra-estrutura Celular, Instituto Oswaldo Cruz/FIOCRUZ, RJ, Brazil
C. R. ALVES
Affiliation:
Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/FIOCRUZ, RJ, Brazil
F. S. SILVA
Affiliation:
Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/FIOCRUZ, RJ, Brazil
L. M. C. CÔRTES
Affiliation:
Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/FIOCRUZ, RJ, Brazil
L. TOMA
Affiliation:
Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, SP, Brazil
R. I. BOUÇAS
Affiliation:
Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, SP, Brazil
T. AGUILAR
Affiliation:
Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, SP, Brazil
H. B. NADER
Affiliation:
Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, SP, Brazil
M. C. S. PEREIRA*
Affiliation:
Laboratório de Ultra-estrutura Celular, Instituto Oswaldo Cruz/FIOCRUZ, RJ, Brazil
*
*Corresponding author: Laboratório de Ultra-estrutura Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil. Tel: +5521 2598 4330. Fax: +5521 2598 4330. E-mail: [email protected]

Summary

Heparin-binding proteins (HBPs) play a key role in Trypanosoma cruzi-host cell interactions. HBPs recognize heparan sulfate (HS) at the host cell surface and are able to induce the cytoadherence and invasion of this parasite. Herein, we analysed the biochemical properties of the HBPs and also evaluated the expression and subcellular localization of HBPs in T. cruzi trypomastigotes. A flow cytometry analysis revealed that HBPs are highly expressed at the surface of trypomastigotes, and their peculiar localization mainly at the flagellar membrane, which is known as an important signalling domain, may enhance their binding to HS and elicit the parasite invasion. The plasmon surface resonance results demonstrated the stability of HBPs and their affinity to HS and heparin. Additionally, gelatinolytic activities of 70 kDa, 65·8 kDa and 59 kDa HBPs over a broad pH range (5·5–8·0) were revealed using a zymography assay. These proteolytic activities were sensitive to serine proteinase inhibitors, such as aprotinin and phenylmethylsulfonyl fluoride, suggesting that HBPs have the properties of trypsin-like proteinases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, C. R., Marzochi, M. C. and Giovanni-de-Simone, S. (1993). Heterogeneity of cysteine proteinases in Leishmania braziliensis and Leishmania major. Brazilian Journal of Medical and Biological Research 26, 167171.Google ScholarPubMed
Antalis, T. M., Bugge, T. H. and Wu, Q. (2011). Membrane-anchored serine proteases in health and disease. Progress in Molecular Biology and Translational Science 99, 150.CrossRefGoogle ScholarPubMed
Ashall, F. (1990). Characterisation of an alkaline peptidase of Trypanosoma cruzi and other trypanosomatids. Molecular and Biochemical Parasitology 38, 7787.CrossRefGoogle ScholarPubMed
Bambino-Medeiros, R., Oliveira, F. O., Calvet, C. M., Vicente, D., Toma, L., Krieger, M. A., Meirelles, M. N. and Pereira, M. C. (2011). Involvement of host cell heparan sulfate proteoglycan in Trypanosoma cruzi amastigote attachment and invasion. Parasitology 138, 593601.CrossRefGoogle ScholarPubMed
Bastos, I. M., Grellier, P., Martins, N. F., Cadavid-Restrepo, G., de Souza-Ault, M. R., Augustyns, K., Teixeira, A. R., Schrével, J., Maigret, B., da Silveira, J. F. and Santana, J. M. (2005). Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80), which is required for parasite entry into mammalian cells. The Biochemical Journal 388, 2938CrossRefGoogle ScholarPubMed
Bastos, I. M., Motta, F. N., Charneau, S., Santana, J. M., Dubost, L., Augustyns, K. and Grellier, P. (2010). Prolyl oligopeptidase of Trypanosoma brucei hydrolyzes native collagen, peptide hormones and is active in the plasma of infected mice. Microbes and Infection 12, 457466.CrossRefGoogle ScholarPubMed
Bates, P. A. (2008). Leishmania sand fly interaction: progress and challenges. Current Opinion in Microbiology 11, 340344.CrossRefGoogle ScholarPubMed
Bates, P. A. and Rogers, M. E. (2004). New insights into the developmental biology and transmission mechanisms of Leishmania. Current Molecular Medicine 4, 601609.CrossRefGoogle ScholarPubMed
Bongertz, V. and Hungerer, K. D. (1978). Trypanosoma cruzi: isolation and characterization of a protease. Experimental Parasitology 45, 818.CrossRefGoogle ScholarPubMed
Bosetto, M. C. and Giorgio, S. (2007). Leishmania amazonensis: multiple receptor-ligand interactions are involved in amastigote infection of human dendritic cells. Experimental Parasitology 116, 306310CrossRefGoogle ScholarPubMed
Bouças, R. I., Trindade, E. S., Tersariol, I. L., Dietrich, C. P. and Nader, H. B. (2008). Development of an enzyme-linked immunosorbent assay (ELISA)-like fluorescence assay to investigate the interactions of glycosaminoglycans to cells. Analytica Chimica Acta 618, 218226.CrossRefGoogle ScholarPubMed
Burleigh, B. A. and Andrews, N. W. (1998). Signaling and host cell invasion by Trypanosoma cruzi. Current Opinion in Microbiology 1, 461465.CrossRefGoogle ScholarPubMed
Burleigh, B. A., Caler, E. V., Webster, P. and Andrews, N. W. (1997). A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2 + −signaling in mammalian cells. Journal of Cell Biology 136, 609620.CrossRefGoogle ScholarPubMed
Buschiazzo, A., Muiá, R., Larrieux, N., Pitcovsky, T., Mucci, J. and Campetella, O. (2012). Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Pathogens 8, e1002474.CrossRefGoogle ScholarPubMed
Caler, E. V., Vaena de Avalos, S., Haynes, P. A., Andrews, N. W. and Burleigh, B. A. (1998). Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. The EMBO Journal 17, 49754986.CrossRefGoogle ScholarPubMed
Calvet, C. M., Toma, L., De Souza, F. R., Meirelles, Mde N. and Pereira, M. C. (2003). Heparan sulfate proteoglycans mediate the invasion of cardiomyocytes by Trypanosoma cruzi. Journal of Eukaryotic Microbiology 50, 97103.CrossRefGoogle ScholarPubMed
Caradonna, K. L. and Burleigh, B. A. (2011). Mechanisms of host cell invasion by Trypanosoma cruzi. Advances in Parasitology 76, 3361.CrossRefGoogle ScholarPubMed
Cazzulo, J. J. (2002). Proteinases of Trypanosoma cruzi: patential targets for the chemotherapy of Changas desease. Current Topics in Medicinal Chemistry 2, 12611271.CrossRefGoogle ScholarPubMed
Cordero, E. M., Gentil, L. G., Crisante, G., Ramírez, J. L., Yoshida, N., Añez, N. and Franco da Silveira, J. (2008). Expression of GP82 and GP90 surface glycoprotein genes of Trypanosoma cruzi during in vivo metacyclogenesis in the insect vector Rhodnius prolixus. Acta Tropica 105, 8791.CrossRefGoogle ScholarPubMed
Côrtes, L. M. C., Pereira, M. C. S., Oliveira-Jr, F. O., Corte-Real, S., da Silva, F. S., Pereira, B. A., Madeira, M. F., de Moraes, M. T., Brazil, R. P. and Alves, C. R. (2012). Leishmania (Viannia) braziliensis: insights on subcellular distribution and biochemical properties of heparin-binding proteins. Parasitology 139, 200207.CrossRefGoogle Scholar
Cuevas, I. C., Cazzulo, J. J. and Sánchez, D. O. (2003). gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infection and Immunity 71, 57395749.CrossRefGoogle Scholar
De Souza, W., de Carvalho, T. M. and Barrias, E. S. (2010). Review on Trypanosoma cruzi: Host Cell Interaction. International Journal of Cell Biology 118.CrossRefGoogle ScholarPubMed
Eugenia Giorgi, M. and de Lederkremer, R. M. (2011). Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite. Carbohydrate Research 346, 13891393.CrossRefGoogle Scholar
Fampa, P., Santos, A. L. and Ramirez, M. I. (2010). Trypanosoma cruzi: ubiquity expression of surface cruzipain molecules in TCI and TCII field isolates. Parasitology Research 107, 443447.CrossRefGoogle ScholarPubMed
Ferreira, D., Cortez, M., Atayde, V. D. and Yoshida, N. (2006). Actin cytoskeleton-dependent and -independent host cell invasion by Trypanosoma cruzi is mediated by distinct parasite surface molecules. Infection and Immunity 74, 55225528.CrossRefGoogle ScholarPubMed
Ghosh, A. K. and Jacobs-Lorena, M. (2011). Surface-expressed enolases of Plasmodium and other pathogens. Memórias do Instituto Oswaldo Cruz 106, 8590.CrossRefGoogle ScholarPubMed
Gonçalves, A. M., Nehme, N. S. and Morel, C. M. (1990). An improved silver staining procedure for schizodeme analysis in polyacrylamide gradient gels. Memórias do Instituto Oswaldo Cruz 85, 101106.CrossRefGoogle ScholarPubMed
Grellier, P., Vendeville, S., Joyeau, R., Bastos, I. M., Drobecq, H., Frappier, F., Teixeira, A. R., Schrével, J., Davioud-Charvet, E., Sergheraert, C. and Santana, J. M. (2001). Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. The Journal of Biological Chemistry 276, 47 07847 086.CrossRefGoogle ScholarPubMed
Guedes, H. L., Rezende, J. M., Fonseca, M. A., Salles, C. M., Rossi-Bergmann, B. and De-Simone, S. G. (2007). Identification of serine proteases from Leishmania braziliensis. Zeitschrift für Naturforschung C 62, 373381.CrossRefGoogle ScholarPubMed
Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews 102, 45014524.CrossRefGoogle ScholarPubMed
Hemerly, J. P., Oliveira, V., Del Nery, E., Morty, R. E., Andrews, N. W., Juliano, M. A. and Juliano, L. (2003). Subsite specificity (S3, S2, S1′, S2′ and S3′) of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity. The Biochemical Journal 373, 933939.CrossRefGoogle ScholarPubMed
Herrera, E. M., Ming, M., Ortega-Barria, E. and Pereira, M. E. (1994). Mediation of Trypanosoma cruzi invasion by heparan sulfate receptors on host cells and penetrin counter-receptors on the trypanosomes. Molecular and Biochemical Parasitology 65, 7383.CrossRefGoogle ScholarPubMed
Heussen, C. and Dowdle, E. B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry 102, 196202.CrossRefGoogle ScholarPubMed
Kulkarni, M. M., Olson, C. H., Engman, D. M. and McGwire, B. S. (2009). Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell invasion. Infection and Immunity 77, 21932200.CrossRefGoogle Scholar
Kribs-Zaleta, C. M. (2010). Alternative transmission modes for Trypanosoma cruzi. Mathematical Biosciences and Engineering 7, 657673.Google ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle ScholarPubMed
Lowndes, C. M., Bonaldo, M. C., Thomaz, N. and Goldenberg, S. (1996). Heterogeneity of metalloprotease expression in Trypanosoma cruzi. Parasitology 112, 393399.CrossRefGoogle ScholarPubMed
Madala, P. K., Tyndall, J. D., Nall, T. and Fairlie, D. P. (2010). Update 1 of: Proteases universally recognise beta strands in their active sites. Chemical Reviews 110, 131.CrossRefGoogle ScholarPubMed
Magdesian, M. H., Tonelli, R. R., Fessel, M. R., Silveira, M. S., Schumacher, R. I., Linden, R., Colli, W. and Alves, M. J. (2007). A conserved domain of the gp85/trans-sialidase family activates host cell extracellular signal-regulated kinase and facilitates Trypanosoma cruzi infection. Experimental Cell Research 313, 210218.CrossRefGoogle ScholarPubMed
McKerrow, J. H., Caffrey, C., Kelly, B., Loke, P. and Sajid, M. (2006). Proteases in parasitic diseases. Annual Review of Pathology 1, 497536.CrossRefGoogle ScholarPubMed
Meyer-Hoffert, U. and Schröder, J. M. (2011). Epidermal proteinases in the pathogenesis of rosacea. Journal of Investigative Dermatology Symposium Proceedings 15, 1623.CrossRefGoogle ScholarPubMed
Morgado-Díaz, J. A., Silva-Lopez, R. E., Alves, C. R., Soares, M. J., Corte-Real, S. and De Simone, S. G. (2005). Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania) amazonensis promastigotes. Memórias do Instituto Oswaldo Cruz 100, 377383.CrossRefGoogle ScholarPubMed
Mortara, R. A., Minelli, L. M., Vandekerckhove, F., Nussenzweig, V. and Ramalho-Pinto, F. J. (2001). Phosphatidylinositol-speciWc phospholipase C (PI-PLC) cleavage of GPI-anchored surface molecules of Trypanosoma cruzi triggers in vitro morphological reorganization of trypomastigotes. Journal of Eukaryotic Microbiology 48, 2737.CrossRefGoogle ScholarPubMed
Motta, F. N., Bastos, I. M., Faudry, E., Ebel, C., Lima, M. M., Neves, D., Ragno, M., Barbosa, J. A., de Freitas, S. M. and Santana, J. M. (2012). The Trypanosoma cruzi virulence factor oligopeptidase B (OPBTc) assembles into an active and stable dimer. PLoS One 7, e30431.CrossRefGoogle ScholarPubMed
Nogueira de Melo, A. C., de Souza, E. P., Elias, C. G., dos Santos, A. L., Branquinha, M. H., d'Avila-Levy, C. M., dos Reis, F. C., Costa, T. F., Lima, A. P., Pereira, M. C. S., Meirelles, M. N. and Vermelho, A. B. (2010). Detection of matrix metallopeptidase-9-like proteins in Trypanosoma cruzi. Experimental Parasitology 125, 256263.CrossRefGoogle ScholarPubMed
Oliveira-Jr, F. O., Alves, C. R., Calvet, C. M., Toma, L., Bouças, R. I., Nader, H. B., Castro Côrtes, L. M., Krieger, M. A., Meirelles, Mde N. and Pereira, M. C. S. (2008). Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain. Microbial Pathogenesis 44, 329338.CrossRefGoogle ScholarPubMed
Oliveira, F. O., Alves, C. R., Souza-Silva, F., Calvet, C. M., Côrtes, L. M., Gonzalez, M. S., Toma, L., Bouças, R. I., Nader, H. B. and Pereira, M. C. S. (2012). Trypanosoma cruzi heparin-binding proteins mediate the adherence of epimastigotes to the midgut epithelial cells of Rhodnius prolixus. Parasitology 139, 735743.CrossRefGoogle Scholar
Ortega-Barria, E. and Pereira, M. E. (1991). A novel T. cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell 67, 411421.CrossRefGoogle ScholarPubMed
Ortega-Barria, E. and Pereira, M. E. (1992). Entry of Trypanosoma cruzi into eukaryotic cells. Infectious Agents and Diseases 1, 136145.Google ScholarPubMed
Peña, C. P., Lander, N., Rodríguez, E., Crisante, G., Añez, N., Ramírez, J. L. and Chiurillo, M. A. (2009). Molecular analysis of surface glycoprotein multigene family TrGP expressed on the plasma membrane of Trypanosoma rangeli epimastigotes forms. Acta Tropica 111, 255262.CrossRefGoogle ScholarPubMed
Pinho, R. T., Beltramini, L. M., Alves, C. R. and De-Simone, S. G. (2009). Trypanosoma cruzi: isolation and characterization of aspartyl proteases. Experimental Parasitology 122, 128133.CrossRefGoogle ScholarPubMed
Rangel, H. A., Araújo, P. M., Repka, D. and Costa, M. G. (1981). Trypanosoma cruzi: isolation and characterization of a proteinase. Experimetal Parasitology 52, 199209.CrossRefGoogle ScholarPubMed
Rathore, D., McCutchan, T. F., Garboczi, D. N., Toida, T., Hernáiz, M. J., LeBrun, L. A., Lang, S. C. and Linhardt, R. J. (2001). Direct measurement of the interactions of glycosaminoglycans and a heparin decasaccharide with the malaria circumsporozoite protein. Biochemistry 40, 11 51811 524.CrossRefGoogle Scholar
Rocha, G. M., Brandão, B. A., Mortara, R. A., Attias, M., de Souza, W. and Carvalho, T. M. (2006). The flagellar attachment zone of Trypanosoma cruzi epimastigote forms. Journal of Structural Biology 154, 8999.CrossRefGoogle ScholarPubMed
Ruiz, R. C., Favoreto-Jr, S., Dorta, M. L., Oshiro, M. E., Ferreira, A. T., Manque, P. M. and Yoshida, N. (1998). Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signalling activity. The Biochemical Journal 330, 505511.CrossRefGoogle ScholarPubMed
Sahar, T., Reddy, K. S., Bharadwaj, M., Pandey, A. K., Singh, S., Chitnis, C. E. and Gaur, D. (2010). Plasmodium falciparum reticulocyte binding-like homologue protein 2 (PfRH2) is a key adhesive molecule involved in erythrocyte invasion. PLoS One 6, e17102.CrossRefGoogle Scholar
Scharfstein, J. and Lima, A. P. (2008). Roles of naturally occurring protease inhibitors in the modulation of host cell signaling and cellular invasion by Trypanosoma cruzi. Subcellular Biochemistry 47, 140154.CrossRefGoogle ScholarPubMed
Silva-Lopez, R. E., Coelho, M. G. and De Simone, S. G. (2005). Characterization of an extracellular serine protease of Leishmania (Leishmania) amazonensis. Memórias do Instituto Oswaldo Cruz 100, 377383.Google Scholar
Silva-López, R. E., dos Santos, T. R., Morgado-Díaz, J. A., Tanaka, M. N. and de Simone, S. G. (2010). Serine protease activities in Leishmania (Leishmania) chagasi promastigotes. Parasitology Research 107, 11511162.CrossRefGoogle ScholarPubMed
Silva-Lopez, R. E., Morgado-Díaz, J. A., Alves, C. R., Côrte-Real, S. and Giovanni-De-Simone, S. (2004). Subcellular localization of an extracellular serine protease in Leishmania (Leishmania) amazonensis. Parasitology Research 93, 328331.CrossRefGoogle ScholarPubMed
Silva-Lopez, R. E., Morgado-Díaz, J. A., dos Santos, P. T. and Giovanni-De-Simone, S. (2008). Purification and subcellular localization of a secreted 75 kDa Trypanosoma cruzi serine oligopeptidase. Acta Tropica 107, 159167.CrossRefGoogle ScholarPubMed
Tanowitz, H. B., Machado, F. S., Jelicks, L. A., Shirani, J., de Carvalho, A. C., Spray, D. C., Factor, S. M., Kirchhoff, L. V. and Weiss, L. M. (2009). Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Progress in Cardiovascular Diseases 51, 524539.CrossRefGoogle ScholarPubMed
Terao-Muto, Y., Yoneda, M., Seki, T., Watanabe, A., Tsukiyama-Kohara, K., Fujita, K. and Kai, C. (2008). Heparin-like glycosaminoglycans prevent the infection of measles virus in SLAM-negative cell lines. Antiviral Research 80, 370376.CrossRefGoogle ScholarPubMed
Tonelli, R. R., Giordano, R. J., Barbu, E. M., Torrecilhas, A. C., Kobayashi, G. S., Langley, R. R., Arap, W., Pasqualini, R., Colli, W. and Alves, M. J. (2010). Role of the gp85/trans-sialidases in Trypanosoma cruzi tissue tropism: preferential binding of a conserved peptide motif to the vasculature in vivo. PLoS Neglected Tropical Diseases 4, e864.CrossRefGoogle Scholar
Toso, M. A., Vial, U. F. and Galanti, N. (2011). Oral transmission of Chagas’ disease. Revista Médica do Chile 139, 258266.Google Scholar
Tossavainen, H., Pihlajamaa, T., Huttunen, T. K., Raulo, E., Rauvala, H., Permi, P. and Kilpeläinen, I. (2006). The layered fold of the TSR domain of P. falciparum TRAP contains a heparin binding site. Protein Science 15, 17601768.CrossRefGoogle ScholarPubMed
Tyler, K. M., Fridberg, A., Toriello, K. M., Olson, C. L., Cieslak, J. A., Hazlett, T. L. and Engman, D. M. (2009). Flagellar membrane localization via association with lipid rafts. Journal of Cell Science 122, 859866.CrossRefGoogle ScholarPubMed
Wu, C. and Wang, S. (2012). A pH-sensitive heparin-binding sequence from Baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells. Journal of Virology 86, 484491.CrossRefGoogle ScholarPubMed
Yoshida, N. (2006). Molecular basis of mammalian cell invasion by Trypanosoma cruzi. Anais da Academia Brasileira de Ciências 78, 87111.CrossRefGoogle ScholarPubMed
Yoshida, N. and Cortez, M. (2008). Trypanosoma cruzi: parasite and host cell signaling during the invasion process. Subcellular Biochemistry 47, 8291.CrossRefGoogle ScholarPubMed
Yoshida, N., Tyler, K. M. and Llewellyn, M. S. (2011). Invasion mechanisms among emerging food-borne protozoan parasites. Trends in Parasitology 27, 459466.CrossRefGoogle ScholarPubMed