Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T22:50:45.934Z Has data issue: false hasContentIssue false

Trematode–gastropod associations in nine non-lacustrine habitats in the Mwanza region of Tanzania

Published online by Cambridge University Press:  08 November 2011

E. S. Loker
Affiliation:
Department of Zoology, Oregon State University, Corvallis, Oregon 97331
H. G. Moyo
Affiliation:
Institute for Medical Research, P.O. Box 1462, Mwanza, Tanzania
S. L. Gardner
Affiliation:
Department of Zoology, Oregon State University, Corvallis, Oregon 97331

Summary

Between August 1978 and July 1979, freshwater gastropods were collected at monthly intervals from 9 different non-lacustrine habitats in the Mwanza region of Tanzania. Of a total of 11708 gastropods representing 14 species, 1748 (14–9%) were infected with trematode sporocysts and/or rediae. Altogether 38 morphologically distinguishable ‘species’ of cercariae were recovered (13 furcocercous, 10 xiphidiocercaria, 6 echin-ostome, 4 cystophorous, 3 gymnocephalous and 2 amphistome species), 22 of which did not conform to previously described African species. The majority (63–8%) of all mature infections were xiphidiocercariae. Biomphalaria pfeifferi, B. sudanica and Ceratophallus natalensis each yielded 11 species of cercariae. Lymnaea natalensis had the highest overall prevalence of infection (36–9%). Cercaria guttera from L. natalensis accounted for 20–4% of all recovered trematode infections and C. blukwa from Biomphalaria accounted for 18–4% of all infections; the high prevalence of these two xiphidiocercariae may alter the transmission patterns of Fasciola gigantica and Schistosoma mansoni, respectively. S. mansoni was recovered from both B. sudanica (22 of 2393 infected) and B. pfeifferi (79 of 1913 infected); S. haematobium (or related species) was recovered from Bulinus (Physopsis) nasutus (50 of 1503 infected) and to a lesser extent from B. (P.) africanus (6 of 186 infected). The findings are discussed in relation to the biological control of trematode diseases in Tanzania.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. & May, R. M. (1979). Prevalence of schistosome infections within molluscan populations: observed patterns and theoretical predictions. Parasitology 79, 6394.CrossRefGoogle ScholarPubMed
Baalawy, S. S. & Moyo, H. G. (1970). Studies on the population dynamics of B. (P.) nasutus and natural S. haematobium infection rates in relation to rainfall at Misungwi and Usagara, Mwanza. East African Medical Journal 47, 472–8.Google Scholar
Basch, P. F. (1975). An interpretation of snail-trematode infection rates: specificity based on concordance of compatible phenotypes. International Journal for Parasitology 5, 449–52.CrossRefGoogle Scholar
Berrie, A. D. (1964). Observations on the life-cycle of Bulinus (Physopsis) ugandae Mandahl-Barth, its ecological relation to Biomphalaria sudanica tanganyicensis (Smith), and its role as an intermediate host of Schistosoma. Annals of Tropical Medicine and Parasitology 58, 457–66.CrossRefGoogle ScholarPubMed
Bisseru, B. (1967). Stages in the development of larval echinostomes recovered from schistosome transmitting molluscs in Central Africa. Journal of Helminthology 41, 89108.CrossRefGoogle Scholar
Bourns, T. K. R. (1963). Larval trematodes parasitizing Lymnaea stagnalis appressa Say in Ontario with emphasis on multiple infections. Canadian Journal of Zoology 41, 937–41.CrossRefGoogle Scholar
Chu, K. Y., Dawood, I. K. & Nabi, H. A. (1972). Seasonal abundance of trematode cercariae in Bulinus truncatus in a small focus of schistosomiasis in the Nile Delta. Bulletin of the World Health Organization 47, 420–2.Google Scholar
Cridland, C. C. (1957 a). Ecological factors affecting the numbers of snails in permanent bodies of water. Journal of Tropical Medicine and Hygiene 60, 250–6.Google ScholarPubMed
Cridland, C. C. (1957 b). Ecological factors affecting the numbers of snails in temporary bodies of water. Journal of Tropical Medicine and Hygiene 60, 287–93.Google ScholarPubMed
Cridland, C. C. (1958). Ecological factors affecting the numbers of snails in a permanent stream. Journal of Tropical Medicine and Hygiene 61, 1620.Google Scholar
Dinnik, J. A. & Dinnik, N. N. (1965). The schistosomes of domestic ruminants in Eastern Africa. Bulletin of Epizootic Diseases of Africa 13, 341–59.Google ScholarPubMed
Fain, A. (1953). Contribution à l'étude des formes larvaires des Trématodes au Congo belge et spécialement de la larve de Schistosoma mansoni. Mémoires, Institut Royal Colonial Belge. Section des Sciences Naturelles et Medicales 22, 1312.Google Scholar
Golvan, Y.-J., Combes, C., Bayssade-Dufour, C. & Nassi, H. (1974). Les cercaires de Ribeiroia marini (Faust et Hoffman, 1934). Trématode antagoniste de Schistosoma mansoni et provoquant la castration du Mollusque-hôte, vecteur de la Bilharziose humaine. Comptes rendus Académie des sciences, Paris 279, 405–8.Google Scholar
Kinoti, G. (1964 a). Observations on the transmission of Schistosoma haematobium and Schistosoma bovis in the lake region of Tanganyika. Bulletin of the World Health Organization 31, 815–23.Google ScholarPubMed
Kinoti, G. (1964 b). A note on the susceptibility of some gastropod molluscs to Schistosoma bovis and S. mattheei. Annals of Tropical Medicine and Parasitology 58, 270–5.CrossRefGoogle ScholarPubMed
Lie, K.J., Kwo, E. H. & Owyang, C. K. (1971). Further field trial to control Schistosoma spindale by trematode antagonism. Southeast Asian Journal of Tropical Medicine and Public Health 2, 237–43.Google Scholar
Lie, K. J., Schneider, C. R., Sornmani, S., Lanza, G. R. & Impand, P. (1974). Biological control by trematode antagonism. I. A successful field trial to control Schistosoma spindale in northeastern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 5, 4659.Google Scholar
Maclean, G., Webbe, G. & Msangi, A. S. (1958). A report on the bilharzia and molluscan survey in the Tanga district of Tanganyika. East African Medical Journal 35, 722.Google ScholarPubMed
Magendantz, M. (1972). The biology of Biomphalaria choanomphala and B. sudanica in relation to their role in the transmission of Schistosoma mansoni in Lake Victoria at Mwanza, Tanzania. Bulletin of the World Health Organization 47, 331–42.Google Scholar
McCullough, F. S. (1981). Biological control of the snail intermediate hosts of human Schistosoma spp.: a review of its present status and future prospects. Acta Tropica 38, 514.Google ScholarPubMed
McCulloügh, F. & Eyakuze, V. M. (1973). WHO/Tanzania schistosomiasis pilot control and training project. Mwanza district, Tanzania-Final Report. World Health Organization Regional Office for Africa AFR/SCHIST/29.Google Scholar
McCullough, F. S., Eyakuze, V. M., Msinde, J. & Nditi, H. (1968). Water resources and bilharziasis transmission in the Misungwi area, Mwanza district, northwest Tanzania. East Africa Medical Journal 45, 295308.Google Scholar
McCullough, F. S., Webbe, G., Baalawy, S. S. & Maselle, S. (1972). An analysis of factors influencing the epidemiology and control of human schistosome infections in Mwanza, Tanzania. East African Medical Journal 49, 568–82.Google ScholarPubMed
Moravec, F., Barus, V., Rysavy, B. & Yousif, F. (1974). Observations on the development of two echinostomes, Echinoparyphium recurvatum and Echinostoma revolutum, the antagonists of human schistosomes in Egypt. Folia Parasitologica (Praha) 21, 107–26.Google ScholarPubMed
Morris, J. R. (1970). An ecological study of the basommatophoran snail Helisoma trivolvis in central Alberta. Ph.D. thesis, University of Alberta.Google Scholar
Nassi, H., Pointier, J.-P. & Golvan, Y.-J. (1979). Bilan d'un essai de contrôle de Biompalaria glabrata en Guadeloupe à l'aide d'un trématode stérilisant. Annales de Parasitologie (Paris) 54, 185–92.Google Scholar
Ooambo-Ongoma, A. H. (1971). Field epidemiology of fascioliasis in Port Bell, Uganda. Bulletin of Epizootic Diseases of Africa 19, 341–51.Google Scholar
Paperna, I. (1967). The elfect of pre-existing trematode infection on the establishment of Schistosoma haematobium larvae in bulinid snails. Ghana Medical Journal 6, 89—90.Google Scholar
Pointier, J. P., Salvat, B., Delplanque, A. & Golvan, Y. (1977). Principaux facteurs régissant la densité des populations de Biomphalaria glabrata (Say 1818), mollusque vecteur de la Schistosomose en Guadeloupe (Antilles françaises). Annales de Parasitologie Humaine et Comparee 52, 277323.CrossRefGoogle Scholar
Porter, A. (1938). The larval Trematoda found in certain South African Mollusca with special reference to schistosomiasis (bilharziasis). Publication of the South African Institute for Medical Research 8, 1492.Google Scholar
Prentice, M. A., Panesar, T. S. & Coles, G. C. (1970). Transmission of Schistosoma mansoni in a large body of water. Annals of Tropical Medicine and Parasitology 64, 339–48.CrossRefGoogle Scholar
Rollinson, D. & Southgate, V. R. (1979). Enzyme analyses of Bulinus africanus group snails (Mollusca: Planorbidae) from Tanzania. Transactions of the Royal Society of Tropical Medicine and Hygiene 73, 667–72.CrossRefGoogle ScholarPubMed
Short, R. B. & Kuntz, R. E. (1976). Patterns of argentophilic papillae of Schistosoma rodhaini and S. mansoni cercariae. Journal of Parasitology 62, 420—5.CrossRefGoogle ScholarPubMed
Teesdale, C. (1962). Ecological observations on the molluscs of significance in the transmission of bilharziasis in Kenya. Bulletin of the World Health Organization 27, 759–82.Google ScholarPubMed
Vercammen-Grandjean, P. H. (1960). Les trématodes du Lac Kivu Sud. Musée Royal de l'Afrique Centrale, Tervuren, Belgique – Annales-Nouvelle Serie in 4° – Sciences Zoologiques 5, 1171.Google Scholar
Webbe, G. (1962 a). Population studies of intermediate hosts in relation to transmission of bilharziasis in East Africa. In Ciba Foundation Symposium on Bilharziasis, (ed. Wolstenholme, G. E. W. and O'Connor, M.), pp. 722. Boston: Little, Brown and Company.CrossRefGoogle Scholar
Webbe, G. (1962 b). The transmission of Schistosoma haematobium in an area of Lake Province, Tanganyika. Bulletin of the World Health Organization 27, 5985.Google Scholar
Webbe, G. & Msangi, A. S. (1958). Observations on three species of Bulinus on the East Coast of Africa. Annals of Tropical Medicine and Parasitology 52, 302–14.CrossRefGoogle ScholarPubMed
Wesenberg-Lund, C. (1934). Contributions to the development of the Trematoda Digenea. Part II. The biology of the freshwater cercariae in Danish freshwaters. Mémoires de l'Académie Royale des Sciences et des Lettres de Danemark, Copenhague. Section des Sciences, 9 série 5(3), 1220.Google Scholar
Wright, C. A. (1966). The pathogenesis of helminths in the Mollusca. Helminthological Abstracts 35, 207–24.Google Scholar
Wright, C. A., Rollinson, D. & Goll, P. H. (1979). Parasites in Bulinussenegalensis (Mollusca: Planorbidae) and their detection. Parasitology 79, 95105.CrossRefGoogle ScholarPubMed
Yamaguti, S. (1975). A Synoptical Review of Life Histories of Digenetic Trematodes of Vertebrates. Kyoto, Japan.Google Scholar