Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T05:58:06.341Z Has data issue: false hasContentIssue false

Treatment with synthetic lipophilic tyrosyl ester controls Leishmania major infection by reducing parasite load in BALB/c mice

Published online by Cambridge University Press:  17 June 2016

RABIAA M. SGHAIER
Affiliation:
Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère, 1002, Tunisia Université Tunis El Manar, Tunis, 1068, Tunisia
IMEN AISSA
Affiliation:
Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Université de Sfax, Route de Soukra, BP 1173, 3038 Sfax, Tunisie
HANÈNE ATTIA
Affiliation:
Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère, 1002, Tunisia Université Tunis El Manar, Tunis, 1068, Tunisia
AYMEN BALI
Affiliation:
Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère, 1002, Tunisia Université Tunis El Manar, Tunis, 1068, Tunisia
PABLO A. LEON MARTINEZ
Affiliation:
Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère, 1002, Tunisia Université Tunis El Manar, Tunis, 1068, Tunisia
GHADA MKANNEZ
Affiliation:
Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère, 1002, Tunisia Université Tunis El Manar, Tunis, 1068, Tunisia
FATMA Z. GUERFALI
Affiliation:
Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère, 1002, Tunisia Université Tunis El Manar, Tunis, 1068, Tunisia
YOUSSEF GARGOURI
Affiliation:
Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Université de Sfax, Route de Soukra, BP 1173, 3038 Sfax, Tunisie
DHAFER LAOUINI*
Affiliation:
Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère, 1002, Tunisia Université Tunis El Manar, Tunis, 1068, Tunisia
*
*Corresponding author: Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère, 1002, Tunisia and Université Tunis El Manar, Tunis, 1068, Tunisia. Tel.: +216 71 845 415. E-mail: [email protected]

Summary

Synthesized lipophilic tyrosyl ester derivatives with increasing lipophilicity were effective against Leishmania (L.) major and Leishmania infantum species in vitro. These findings prompted us to test in vivo leishmanicidal properties of these molecules and their potential effect on the modulation of immune responses. The experimental BALB/c model of cutaneous leishmaniasis was used in this study. Mice were infected with L. major parasites and treated with three in vitro active tyrosyl esters derivatives.

Among these tested tyrosylcaprate (TyC) compounds, only TyC10 exhibited an in vivo anti-leishmanial activity, when injected sub-cutaneously (s.c.). TyC10 treatment of L. major-infected BALB/c mice resulted in a decrease of lesion development and parasite load. TyC10 s.c. treatment of non-infected mice induced an imbalance in interferon γ/interleukin 4 (IFN-γ/IL-4) ratio cytokines towards a Th1 response. Our results indicate that TyC10 s.c. treatment improves lesions’ healing and parasite clearance and may act on the cytokine balance towards a Th1 protective response by decreasing IL-4 and increasing IFN-γ transcripts. TyC10 is worthy of further investigation to uncover its mechanism of action that could lead to consider this molecule as a potential drug candidate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aissa, I., Sghair, R. M., Bouaziz, M., Laouini, D., Sayadi, S. and Gargouri, Y. (2012). Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities. Lipids in Health and Disease 11, 1.Google Scholar
Alvar, J., Velez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., den Boer, M. and Team, W. L. C. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7, e35671.Google Scholar
Ayatollahi, J. and Halvani, A. (2011). Effect of glucantime on blood factors in patients with cutaneous leishmaniasis. Iranian journal of Pediatric Hematology Oncology 1, 5761.Google Scholar
Benhnini, F., Chenik, M., Laouini, D., Louzir, H., Cazenave, P. A. and Dellagi, K. (2009). Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains. Clinical and Vaccine Immunology 16, 15291537.CrossRefGoogle ScholarPubMed
Chakravortty, D., Hansen-Wester, I. and Hensel, M. (2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. The Journal of Experimental Medicine 195, 11551166.Google Scholar
Davis, A. S., Vergne, I., Master, S. S., Kyei, G. B., Chua, J. and Deretic, V. (2007). Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLoS Pathogens 3, e186.CrossRefGoogle ScholarPubMed
De Oliveira, A., Mesquita, J. T., Tempone, A. G., Lago, J. H. G., Guimarães, E. F. and Kato, M. J. (2012). Leishmanicidal activity of an alkenylphenol from Piper malacophyllum is related to plasma membrane disruption. Experimental Parasitology 132, 383387.Google Scholar
Gamboa-León, M., Aranda-González, I., Mut-Martín, M., García-Miss, M. and Dumonteil, E. (2007). In vivo and in vitro control of Leishmania mexicana due to Garlic-induced NO production. Scandinavian Journal of Immunology 66, 508514.Google Scholar
Ghazanfari, T., Hassan, Z., Ebtekar, M., Ahmadiani, A., Naderi, G. and Azar, A. (2000). Garlic induces a shift in cytokine pattern in Leishmania major-infected BALB/c mice. Scandinavian Journal of Immunology 52, 491495.Google Scholar
Gradoni, L. and Ascenzi, P. (2004). Nitric oxide and anti-protozoan chemotherapy. Parassitologia 46, 101103.Google Scholar
Kébaier, C., Louzir, H., Chenik, M., Ben Salah, A. and Dellagi, K. (2001). Heterogeneity of wild Leishmania major isolates in experimental murine pathogenicity and specific immune response. Infection and Immunity 69, 49064915.Google Scholar
Minodier, P. and Parola, P. (2007). Cutaneous leishmaniasis treatment. Travel Medicine and Infectious Disease 5, 150158.Google Scholar
Müller, A. J., Aeschlimann, S., Olekhnovitch, R., Dacher, M., Späth, G. F. and Bousso, P. (2013). Photoconvertible pathogen labeling reveals nitric oxide control of Leishmania major infection in vivo via dampening of parasite metabolism. Cell Host & Microbe 14, 460467.CrossRefGoogle ScholarPubMed
Musonda, C. C., Whitlock, G. A., Witty, M. J., Brun, R. and Kaiser, M. (2009). Synthesis and evaluation of 2-pyridyl pyrimidines with in vitro antiplasmodial and antileishmanial activity. Bioorganic & Medicinal Chemistry Letters 19, 401405.CrossRefGoogle ScholarPubMed
Nagle, A. S., Khare, S., Kumar, A. B., Supek, F., Buchynskyy, A., Mathison, C. J., Chennamaneni, N. K., Pendem, N., Buckner, F. S., Gelb, M. H. and Molteni, V. (2014). Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chemical Reviews 22, 1130511347.CrossRefGoogle Scholar
Olekhnovitch, R., Ryffel, B., Müller, A. J. and Bousso, P. (2014). Collective nitric oxide production provides tissue-wide immunity during Leishmania infection. The Journal of Clinical Investigation 124, 17111722.CrossRefGoogle ScholarPubMed
Petersen, A. L. d. O. A., Guedes, C. E. S., Versoza, C. L., Lima, J. G. B., de Freitas, L. A. R., Borges, V. M. and Veras, P. S. T. (2012). 17-AAG kills intracellular Leishmania amazonensis while reducing inflammatory responses in infected macrophages. PLoS ONE 7, e49496.Google Scholar
Radonić, A., Thulke, S., Mackay, I. M., Landt, O., Siegert, W. and Nitsche, A. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications 313, 856862.Google Scholar
Rottenberg, M. E., Castaños-Velez, E., De Mesquita, R., Laguardia, O. G., Biberfeld, P. and Örn, A. (1996). Intracellular co-localization of Trypanosoma cruzi and inducible nitric oxide synthase (iNOS): evidence for dual pathway of iNOS induction. European Journal of Immunology 26, 32033213.Google Scholar
Sen, R. and Chatterjee, M. (2011). Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine 18, 10561069.Google Scholar
Singh, I. P., Jain, S. K., Kaur, A., Singh, S., Kumar, R., Garg, P., Sharma, S. S. and Arora, S. K. (2010). Synthesis and antileishmanial activity of piperoyl-amino acid conjugates. European Journal of Medicinal Chemistry 45, 34393445.Google Scholar
Siqueira-Neto, J. L., Song, O.-R., Oh, H., Sohn, J.-H., Yang, G., Nam, J., Jang, J., Cechetto, J., Lee, C. B. and Moon, S. (2010). Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Neglected Tropical Diseases 4, e675.Google Scholar
Wahle, K. W., Brown, I., Rotondo, D. and Heys, S. D. (2010). Plant phenolics in the prevention and treatment of cancer. Bio-Farms for Nutraceuticals 698, 3651.Google Scholar
WHO (2010). Control of the leishmaniases: report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases, World Health Organization, Geneva, 22–26 March 2010.Google Scholar
Yasinzai, M., Khan, M., Nadhman, A., and Shahnaz, G. (2013). Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives. Future Medicinal Chemistry 5, 18771888.Google Scholar