Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T07:32:02.779Z Has data issue: false hasContentIssue false

Trans-sialidase, SAPA amino acid repeats and the relationship between Trypanosoma cruzi and the mammalian host

Published online by Cambridge University Press:  06 April 2009

A. C. C. Frasch
Affiliation:
Instituto de investigaciones Bioquímicas Fundación Campomar, Antonio Machado 151, (1405) Buenos Aires, Argentina

Summary

During invasion of multicellular organisms, protozoan parasites expose functional molecules that become targets for the host immune response. Recent research on Trypanosoma cruzi, the agent of Chagas' disease, suggests a new model of how the parasite might deal with this problem. Several antigens of T. cruzi have tandemly repeated amino acid motifs in molecules with as yet unknown functions. In two cases, these repeats are in molecules with a defined structure or function. Both proteins are implicated in the invasion of host-cells by the parasite. One of these is the core protein of a putative mucin-like glycoprotein that has Thr/Pro–rich repeats which, by themselves, might define the structure of a highly O-glycosylated molecule. The other protein is SAPA/trans-sialidase/neuraminidase, a molecule able to transfer sialic acid, that has so far only been described in trypanosomes. The amino acid repeats present in SAPA/trans-sialidase/neuraminidase are unrelated to the enzymic activity and constitute an immunodominant C–terminal domain. The N–terminal domain of SAPA/trans-sialidase/neuraminidase controls the enzymic activity since a recombinant molecule lacking the repeats conserves trans-sialidase activity. That both domains are functionally independent is also indicated by experiments that show that antibodies directed against the amino acid repeats are unable to inhibit trans-sialidase activity. A large number of proteins having trans-sialidase related sequences but lacking enzymic activity are also present in the surface membrane of the parasite. The immunodominant SAPA/trans-sialidase/neuraminidase repeats, together with the complex network of cross-reacting epitopes present in related but enzymically inactive proteins might contribute to the delay in mounting an effective antibody response. However, antibodies neutralizing trans-sialidase activity are generated later during the infection. These antibody specificities are directed to the enzymic domain of the molecule and might contribute to the control of parasite dissemination after the early period of the infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abuin, G., Colli, W., de Souza, W. & Alves, J. M. (1989). A surface antigen of Trypanosoma cruzi involved in cell invasion (Tc-85) is heterogeneous in expression and molecular constitution. Molecular and Biochemical Parasitology 35, 229–38.CrossRefGoogle ScholarPubMed
Affranchino, J. L., Pollevick, G. D. & Frasch, A. C. C. (1991). The expression of the major shed Trypanosoma cruzi antigen results from the developmentally-regulated transcription of a small gene family. FEBS Letters 280, 316–20.CrossRefGoogle ScholarPubMed
Andrews, N. W., Kong, Hong K. S., Robbins, E. S. & Nussenzweig, V. (1987). Stage-specific surface antigens expressed during the morphogenesis of vertebrate forms of Trypanosoma cruzi. Experimental Parasitology 64, 474–84.CrossRefGoogle ScholarPubMed
Borst, P. (1991). Transferrin receptor, antigenic variation and the prospect of a trypanosome vaccine. Trends in Genetics 7, 307–9.CrossRefGoogle ScholarPubMed
Briones, M. R. S., Chaves, L. B., Egima, C. M. & Schenkman, S. (1992). Insect-derived forms of Trypanosoma cruzi express at the stationary growth phase a trans-sialidase/neuraminidase that is structurally different of that from mammalian-derived forms. Memorias do Institute Oswaldo Cruz 87, 142.Google Scholar
Buschiazzo, A., Campetella, O., Macina, R. A., Salceda, S., Frasch, A. C. C. & Sanchez, D. O. (1992). Sequence of a Trypanosoma cruzi gene coding for a protein antigenic during the chronic phase of human Chagas' disease. Molecular and Biochemical Parasitology 54, 125–8.CrossRefGoogle Scholar
Buschiazzo, A., Cremona, M. L., Campetella, O. E. & Frasch, A. C. C. (1993). Sequence of a Trypanosoma rangeli gene closely related to Trypanosoma cruzi trans-sialidase. Molecular and Biochemical Parasitology 62, 115–6.Google Scholar
Campetella, O., Sanchez, D. O., Cazzulo, J. J. & Frasch, A. C. C. (1992). A superfamily of Trypanosoma cruzi surface antigens. Parasitology Today 8, 378–81.CrossRefGoogle ScholarPubMed
Campetella, O. E., Uttaro, A. D., Parodi, A. J. & Frasch, A. C. C. (1994). A recombinant Trypanosoma cruzi trans-sialidase lacking the amino acid repeats retains the enzymatic activity. Molecular and Biochemical Parasitology (in press).CrossRefGoogle ScholarPubMed
Cazzulo, J. J. (1991). Proteinases of Trypanosoma cruzi. In Biochemistry of Parasitic Protozoa ed. Coombs, G. H. & North, M. J., pp. 191–9. London: Taylor & Francis.Google Scholar
Cazzulo, J. J. & Frasch, A. C. C. (1992). SAPA/trans-sialidase and cruzipan: two antigens from Trypanosoma cruzi contain immunodominant but enzymatically inactive domains. FASEB Journal 6, 3259–64.CrossRefGoogle ScholarPubMed
Cerami, C., Frevert, U., Sinnis, P., Takacs, B., Clavijo, P., Santos, M. J. & Nussenzweig, V. (1992). The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70, 1021–33.CrossRefGoogle ScholarPubMed
Colli, w. (1993). Trans-sialidase: a unique enzyme activity discovered in the protozoan Trypanosoma cruzi. FASEB Journal, (in press).Google Scholar
Cross, G. A. M. (1990). Cellular and genetic aspects of antigenic variation in trypanosomes. Annual Review of Immunology 8, 83110.CrossRefGoogle ScholarPubMed
Cross, G. A. M. & Takle, G. B. (1993). The surface trans-sialidase family of Trypanosoma cruzi. Annual Review of Microbiology, (in press).CrossRefGoogle ScholarPubMed
Davies, C. D. & Kuhn, R. (1990). Detection of antigens with affinity for host cell membrane polypeptides in culture supernatants of Trypanosoma cruzi. Infection and Immunity 58, 1812–20.CrossRefGoogle Scholar
Devine, P. L. & McKenzie, F. C. (1992). Mucins: structure, function, and associations with malignancy. BioEssays 14, 619–25.CrossRefGoogle ScholarPubMed
Engstler, M. & Schauer, R. (1993). Sialidases from African trypanosomes. Parasitology Today 9, 22–5.CrossRefGoogle ScholarPubMed
Fenton-Hall, B. & Joiner, K. A. (1993). Developmentally-regulated virulence factors of Trypanosoma cruzi and their relationship to evasion of host defences. Journal of Eukaryotic Microbiology 40, 207–13.CrossRefGoogle Scholar
Ferrero-Garcia, M. A., Trombetta, S. E., Sanchez, D. O., Reglero, A., Frasch, A. C. C. & Parodi, A. J. (1993). The action of Trypanosoma cruzi trans-sialidase on glycolipids and glycoproteins. European Journal of Biochemistry 213, 765–71.CrossRefGoogle ScholarPubMed
Fouts, D. L., Ruef, B. J., Ridley, P. T., Wrightsman, R. A., Peterson, D. S. & Manning, J. E. (1991). Nucleotide sequence and transcription of an 85 kDa surface antigen gene of Trypanosoma cruzi. Molecular and Biochemical Parasitology 46, 189200.CrossRefGoogle ScholarPubMed
Frasch, A. C. C., Cazzulo, J. J., Aslund, L. & Peterson, U. (1991). Comparison of genes encoding Trypanosoma cruzi antigens. Parasitology Today 7, 148–51.CrossRefGoogle ScholarPubMed
Frasch, A. C. C. & Reyes, M. B. (1990). Diagnosis of Chagas' disease using recombinant DNA technology. Parasitology Today 6, 137–40.CrossRefGoogle ScholarPubMed
Frevert, U., Schenkman, S. & Nussenzweig, V. (1992). Stage-specific expression and intracellular shedding of the cell surface trans-sialidase of Trypanosoma cruzi. Infection and Immunity 60, 2349–60.CrossRefGoogle ScholarPubMed
Garfinkel, M. D., Pruitt, R. E. & Meyerowitz, E. M. (1983). DNA sequences, gene regulation and modular protein evolution in the Drosophila 68C glue gene cluster. Journal of Molecular Biology 168, 765–89.CrossRefGoogle ScholarPubMed
Hoft, D. F., Kim, K. S., Otsu, K., Moser, D. R., Yost, W. J., Blumin, J. H., Donelson, J. E. & Kirchhoff, L. V. (1989). Trypanosoma cruzi expresses diverse repetitive protein antigens. Infection and Immunity 57, 1959–67.Google Scholar
Iban˜z, C., Affranchino, J. L., Macina, R. A., Reyes, M. B., Leguizamon, S., Camargo, M. E., Aslund, L., Peterson, U. & Frasch, A. C. C. (1988). Multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. Molecular and Biochemical Parasitology 30, 2734.Google Scholar
Kemp, D. J., Coppel, R. L. & Anders, R. F. (1987). Repetitive proteins and genes of malaria. Annual Review of Microbiology 41, 181208.CrossRefGoogle ScholarPubMed
Lafaille, J. J., Linss, J., Krieger, M. A., Souto-Padron, T., De Souza, W. & Goldenberg, S. (1989). Structure and expression of two Trypanosoma cruzi genes encoding antigenic proteins bearing repetitive epitopes. Molecular and Biochemical Parasitology 35, 127–36.CrossRefGoogle ScholarPubMed
Lasky, L. A., Singer, M. S., Dowbenko, D., Imai, Y., Henzel, W. J., Grimley, C., Fennie, C., Gillett, N., Watson, S. R. & Rones, S. D. (1992). An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 69, 927–38.CrossRefGoogle ScholarPubMed
Leguizamon, M. S., Campetella, O. E., Reyes, M. B., Ibañez, C. F., Basombrio, M. A., Rincon, J., Orn, A. & Frasch, A. C. C. (1991). Bloodstream Trypanosoma cruzi parasites from mice simultaneously express antigens that are markers of acute and chronic human Chagas' disease. Parasitology 102, 379–85.Google Scholar
Macina, R. A., Affranchino, J. L., Pollevick, G., Jazin, E. & Frasch, A. C. C. (1989). Variable number of repeat units in genes encoding Trypanosoma cruzi antigens. FEES Letters 257, 365–8.CrossRefGoogle ScholarPubMed
Ming, M., Chuenkova, M., Ortega-Barria, E. & Pereira, M. E. A. (1993). Mediation of Trypanosoma cruzi invasion by sialic acid on the host cell and trans-sialidase on the trypanosome. Molecular and Biochemical Parasitology 59, 243–52.Google Scholar
Muller, N., Hemphill, A., Imboden, M., Duvallet, G., Dwinger, R. H. & Seebeck, T. (1992). Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection. Parasitology 104, 111–20.Google Scholar
Murray, P. J. & Spithill, T. W. (1991). Variants of a Leishmania surface antigen derived from a multigenic family. Journal of Biological Chemistry 266, 24477–84.CrossRefGoogle ScholarPubMed
Nussenzweig, V. & Nussenzweig, R. (1989). Rationale for the development of an engineered sporozoite malaria vaccine. Advances in Immunology 45, 283334.Google Scholar
O'Connell, B. C., Hagen, F. K. & Tabak, L. A. (1992). The influence of flanking sequence on the 0-glycosylation of threonine in vitro. Journal of Biological Chemistry 267, 25010–18.Google Scholar
Ortega-Barria, E. & Pereira, M. E. A. (1991). A novel T. cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell 67, 411–21.CrossRefGoogle ScholarPubMed
Ortega-Barria, E. & Pereira, M. E. A. (1992). Entry of Trypanosoma cruzi into eukaryotic cells. Infectious Agents and Disease 1, 136–45.Google ScholarPubMed
Ouaissi, M. A. (1988). Role of RGD sequence in parasite adhesion to host cells. Parasitology Today 4, 169–73.Google Scholar
Parodi, A., Pollevick, G. D., Mautner, M., Buschiazzo, A., Sanchez, D. O. & Frasch, A. C. C. (1992). Identification of the gene(s) encoding the trans-sialidase of Trypanosoma cruzi. EMBO Journal 11, 1705–10.Google Scholar
Pereira, M. E. A., Santiago-Mejia, J., Ortega-Barria, E., Matzilevich, D. & Prioli, R. E. (1991). The Trypanosoma cruzi neuraminidase contains sequences similar to bacterial neuraminidases, to YWTD repeats of the LDL receptor and to type III modules of fibronectin. Journal of Experimental Medicine 174, 179–92.Google Scholar
Peterson, D. S., Wrightsman, R. A. & Manning, J. E. (1986). Cloning of a major surface-antigen gene of Trypanosoma cruzi and identification of a nonapeptide repeat. Nature 322, 566–8.Google Scholar
Piras, M. M., Henriquez, D. & Piras, R. (1987). The effect of fetuin and other sialoglycoproteins on the in vitro penetration of Trypanosoma cruzi trypomastigotes into fibroblastic cells. Molecular and Biochemical Parasitology 22, 135–43.Google Scholar
Pollevick, G. D., Affranchino, J. L., Frasch, A. C. C. & Sanchez, D. O. (1991). The complete sequence of SAPA, a shed-acute phase-antigen of Trypanosoma cruzi. Molecular and Biochemical Parasitology 47, 247–50.Google Scholar
Pollevick, G., Sanchez, O., Campetella, O., Henriksson, J., Souza, M., Hellman, U., Peterson, U., Cazzulo, J. J. & Frasch, A. C. C. (1993). Members of the SAPA/trans-sialidase protein family have identical N–terminal sequences and a putative signal peptide. Molecular and Biochemical Parasitology 59, 171–4.Google Scholar
de Carvalho, Pontes L. C., Tomlinson, S., Vanderkerckhove, F., Bienen, E. J., Clarkson, A. B., Jiang, M. S., Hart, G. W. & Nussenzweig, V. (1993). Characterization of a novel trans-sialidase of Trypanosoma brucei procyclic trypomastigotes and identification of procyclin as the main sialic acid acceptor. Journal of Experimental Medicine 177, 465–74.CrossRefGoogle Scholar
Previato, J. O., Andrade, A. F. B., Pessolani, M. C. V. & Previato, L. M. (1985). Incorporation of sialic acid into Trypanosoma cruzi macromolecules. A proposal for a new metabolic route. Molecular and Biochemical Parasitology 16, 8596.Google Scholar
Prioli, R. P., Ortega-Barria, E., Santiago-Mejia, J. & Pereira, M. E. A. (1992). Mapping of a B-cell epitope present in the neuraminidase of Trypanosoma cruzi. Molecular and Biochemical Parasitology 52, 8596.CrossRefGoogle ScholarPubMed
Reyes, M. B., Lorca, M., Munoz, P. & Frasch, A. C. C. (1990). Fetal IgG specification against Trypanosoma cruzi antigens in infected newborns. Proceedings of the National Academy of Sciences, USA 87, 2846–50.Google Scholar
Reyes, M. B., Pollevick, G. D. & Frasch, A. C. C. (1994). An unusually small gene encoding a putative mucin-like glycoprotein in Trypanosoma cruzi. Gene (in press).Google Scholar
Roggentin, P., Rothe, B., Kaper, J. B., Galen, J., Lawrisuk, L., Vimr, E. R. & Schauer, R. (1989). Conserved sequences in bacterial and viral neuraminidases. Glycoconjugate Journal 6, 349–56.Google Scholar
Ruiz, R. C., Riggoni, V. L., Gonzalez, J. & Yoshida, N. (1993). The 35/50 kDa surface antigen of Trypanosoma cruzi metacyclic trypomastigotes, an adhesion molecule involved in host cell invasion. Parasite Immunology 15, 121–5.CrossRefGoogle ScholarPubMed
Schauer, R., Reuter, G., Muhlpfordt, H., Andrade, A. F. B. & Pereira, M. E. A. (1983). The occurrence of N–acetyl–and N–glycoloylneuraminic acid in Trypanosoma cruzi. Hoppe-Seyler's Zeitschrift für Physiolgische Chemie 364, 1053–7.CrossRefGoogle ScholarPubMed
Schenkman, S., Diaz, C. & Nussenzweig, V. (1991 a). Attachment of Trypanosoma cruzi trypomastigotes to receptors at restricted cell surface domains. Experimental Parasitology 72, 7686–92.CrossRefGoogle ScholarPubMed
Schenkman, s. & Eichinger, D. (1993 b). Trypanosoma cruzi trans-sialidase and cell invasion. Parasitology Today 9, 218–22.Google Scholar
Schenkman, S., Ferguson, M. A. J., Heise, N., Cardoso De Almeida, M. L., Mortara, R. A. & Yoshida, N. (1993 c). Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Molecular and Biochemical Parasitology 59, 293304.Google Scholar
Schenkman, S., Furosaki, T., Ravetch, J. V. & Nussenzweig, V. (1992). Evidence for the participation of the Ssp–3 antigen in the invasion of non-phagocytic mammalian cells by Trypanosoma cruzi. Journal of Experimental Medicine 175, 1635–41.CrossRefGoogle Scholar
Schenkman, S., Jiang, M. S., Hart, G. W. & Nussenzweig, V. (1991 b). A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell 65, 1117–26.CrossRefGoogle ScholarPubMed
Schenkman, S., Vanderkerckhove, F. & Schenkman, S. (1993 a). Mammalian cell sialic acid enhances Trypanosoma cruzi invastion. Infection and Immunity 61, 598602.Google Scholar
Schneider, A., Hemphill, A., Wyler, T. & Seebeck, T. (1988). Large microtubule-associated protein of T. brucei has tandemly repeated, near-identical sequences. Science 241, 459–62.CrossRefGoogle ScholarPubMed
Scudder, P., Doom, J. P., Chuenkova, M., Manger, I. D. & Pereira, M. E. A. (1993). Enzymatic characterization of β–D–galactoside 2, 3 trans-sialidase from Trypanosoma cruzi. Journal of Biological Chemistry 268, 9886–91.CrossRefGoogle ScholarPubMed
Souto-Padron, T., Reyes, M. B., Leguizamon, S., Campetella, A., Frasch, A. C. C. & De Souza, W. (1989). Trypanosoma cruzi proteins that are antigenic during the acute and chronic periods of the infection are located in defined parasite regions. European Journal of Cell Biology 50, 272–8.Google Scholar
Uemura, H., Schenkman, S., Nussenzweig, V. & Eichinger, D. (1992). Only some members of a gene family in Trypanosoma cruzi encode proteins that express both trans-sialidase and neuraminidase activities. EMBO Journal 11, 3837–44.Google Scholar
Ploeg, Van Der L. H. T., Valerio, D., De Lange, T., Bernards, A., Borst, P. & Grosveld, F. G. (1982). An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genome. Nucleic Acids Research 10, 5905–23.Google Scholar
Voorhis, Van W. C., Barrett, L., Koelling, R. & Farr, A. G. (1993). f1–160 proteins of Trypanosoma cruzi are expressed from a multi-gene family and contain two distinct epitopes that mimic nervous tissues. Journal of Experimental Medicine (in press).Google Scholar
Vanderkerckhove, F., Schenkman, S., Pontes De Carvalho, L., Tomlinson, S., Kiso, M., Yoshida, M., Hasegawa, A. & Nussenzweig, V. (1992). Substrate specificity of the Trypanosoma cruzi trans-sialidase. Glycobiology 2, 541–8.CrossRefGoogle Scholar
Vergara, U., Lorca, M., Veloso, C., Gonzalez, A., Engstrom, A., Aslund, L., Peterson, U. & Frasch, A. C. C. (1991). Assay for detection of Trypanosoma cruzi antibodies in human sera based on reaction with synthetic peptides. Journal of Clinical Microbiology 29, 2034–7.CrossRefGoogle ScholarPubMed
Yoshida, N., Mortara, R. A., Aragut, M. F., Gonzalez, J. C. & Russo, M. (1989). Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35 and 50–kilodalton surface glycoconjugates of Trypanosoma cruzi. Infection and Immunity 57, 1663–7.Google Scholar
Zingales, B., Carniol, C., de Lederkremer, R. M. & Colli, W. (1987). Direct sialic acid transfer from a protein donor to glycolipids of trypomastigote forms of Trypanosoma cruzi. Molecular and Biochemical Parasitology 26, 135–44.CrossRefGoogle ScholarPubMed