Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T01:14:19.109Z Has data issue: false hasContentIssue false

Transport processes of 2-deoxy-D-glucose in erythrocytes infected with Plasmodium yoelii, a rodent malaria parasite

Published online by Cambridge University Press:  06 April 2009

A. Izumo
Affiliation:
Department of Medical Zoology, Osaka City University Medical School, Asahi-machi, Abeno-ku, Osaka 545, Japan
K. Tanabe
Affiliation:
Department of Medical Zoology, Osaka City University Medical School, Asahi-machi, Abeno-ku, Osaka 545, Japan
M. Kato
Affiliation:
Department of Medical Zoology, Osaka City University Medical School, Asahi-machi, Abeno-ku, Osaka 545, Japan
S. Doi
Affiliation:
Department of Legal Medicine, Kinki University School of Medicine, Osaka-Sayama, Osaka 589, Japan
K. Maekawa
Affiliation:
Department of Medical Zoology, Osaka City University Medical School, Asahi-machi, Abeno-ku, Osaka 545, Japan
S. Takada
Affiliation:
Department of Medical Zoology, Osaka City University Medical School, Asahi-machi, Abeno-ku, Osaka 545, Japan

Summary

The transport processes of D-glucose in Plasmodium yoelii-infected mouse erythrocytes were investigated using 2-deoxy-D-glucose (2DOG), a non-metabolizable analogue of D-glucose. Infected cells showed an increase in the uptake of 2DOG compared to uninfected controls, and an effect which was more prominent in cells with mature-stage parasites. Kinetic studies measuring the initial rates of 2DOG uptake revealed two components in infected cells with late trophozoite and schizont-stage parasites: a simple diffusion system and a carrier (transporter)-mediated system. The transporter was common for D-glucose and 2DOG and had a kinetic constant indicating a high affinity for 2DOG (the Km = 0·18 mM and the Vmax = 0·61 mmol/1010 cells/min), as compared to the constant of the mouse erythrocyte carrier (the Km = 10 mM and the Vmax = 1·8 mmol/1010 cells/min). Determination of the distribution of [3H]2DOG in infected cells and experiments with metabolic inhibitors indicated that the simple diffusion system localizes in the membrane of host cells and the transporter in the parasite plasma membrane. The parasite glucose transporter was much less sensitive to cytochalasin B than that of the host cells and the uptake of 2DOG via the transporter was dependent on energy. Based on these findings, the following features emerge: D-glucose first gains access to the cytosol of infected erythrocytes via the simple diffusion system, which appears after infection by the parasite, and an active uptake against the concentration gradient takes place at the parasite plasma membrane via the parasite glucose transporter in an energy dependent manner. Finally, an energy transduction mechanism for the transport of glucose across the parasite plasma membrane is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aronson, P. S. & Sacktor, B. (1975). The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. Journal of Biological Chemistry 250, 6032–9.CrossRefGoogle ScholarPubMed
Baldwin, S. A. & Lienhard, G. E. (1981). Glucose transport across plasma membranes: facilitated diffusion systems. Trends in Biochemical Sciences 6, 208–11.CrossRefGoogle Scholar
Dawson, A. C. & Widdas, W. F. (1963). Inhibition of the glucose permeability of human erythrocytes by N-ethylmaleimide. Journal of Physiology 168, 644–59.CrossRefGoogle Scholar
Divo, A. A., Geary, T. G., Jensen, J. B. & Ginsburg, H. (1985). The mitochondrion of Plasmodium falciparum visualized by rhodamine 123 fluorescence. Journal of Protozoology 32, 442–6.CrossRefGoogle ScholarPubMed
Elbrink, J. & Bihler, I. (1975). Membrane transport: its relation to cellular metabolic rates. Science 188, 1177–84.CrossRefGoogle ScholarPubMed
Foury, F. & Goffeau, A. (1975). Stimulation of active uptake of nucleosides and amino acids by cyclic adenosine 3′, 5′-monophosphate in the yeast Schizosaccharomyces pombe. Journal of Biological Chemistry 250, 2354–62.CrossRefGoogle ScholarPubMed
Ginsburg, H., Handeli, S., Friedman, S., Gorodetsky, R. & Krugliak, M. (1986). Effects of red blood cell potassium and hypertonicity on the growth of Plasmodium falciparum in culture. Zeitschrift für Parasitenkunde 72, 185–99.CrossRefGoogle ScholarPubMed
Ginsburg, H., Krugliak, M., Eidelman, O. & Cabantchik, Z. I. (1983). New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Molecular and Biochemical Parasitology 8, 177–90.CrossRefGoogle ScholarPubMed
Ginsburg, H., Kutner, S., Krugliak, M. & Cabantchik, Z. I. (1985). Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Molecular and Biochemical Parasitology 14, 313–22.CrossRefGoogle ScholarPubMed
Gupta, C. M. & Mishra, G. C. (1981). Transbilayer phospholipid asymmetry in Plasmodium knowlesi-infected host cell membrane. Science 212, 1047–9.CrossRefGoogle ScholarPubMed
Homewood, C. A. & Neame, K. D. (1974). Malaria and the permeability of the host erythrocyte. Nature, London 252, 718–19.CrossRefGoogle ScholarPubMed
Hopfer, U. & Groseclose, R. (1980). The mechanism of Na+-dependent D-glucose transport. Journal of Biological Chemistry 255, 4453–62.CrossRefGoogle ScholarPubMed
Izumo, A., Tanabe, K. & Kato, M. (1987). A method for monitoring the viability of malaria parasites (Plasmodium yoelii) freed from the host erythrocytes. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 264–7.CrossRefGoogle ScholarPubMed
Izumo, A., Tanabe, K. & Kato, M. (1988). The plasma membrane and mitochondrial membrane potentials of Plasmodium yoelii, Comparative Biochemistry and Physiology, B 91B, 735–9.Google ScholarPubMed
Kimmich, G. A. (1970). Active sugar accumulation by isolated intestinal epithelial cells: a new model for sodium-dependent metabolite transport. Biochemistry 9, 3669–77.CrossRefGoogle ScholarPubMed
Kimmich, G. A. & Randles, J. (1979). Energetics of sugar transport by isolated intestinal epithelial cells: effects of cytochalasin B. American Journal of Physiology 237, c56–c63.CrossRefGoogle ScholarPubMed
Kutner, S., Breuer, W. V., Ginsburg, H., Aley, S. B. & Cabantchik, Z. I. (1985). Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: association with parasite development. Journal of Cellular Physiology 125, 521–7.CrossRefGoogle ScholarPubMed
Kutner, S., Breuer, W. V., Ginsburg, H. & Cabantchik, Z. I. (1987). On the mode of action of phlorizin as an antimalarial agent in in vitro cultures of Plasmodium falciparum. Biochemical Pharmacology 36, 123–9.CrossRefGoogle ScholarPubMed
Lefevre, P. G. & Marshall, J. K. (1959). The attachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport. Journal of Biological Chemistry 234, 3022–6.CrossRefGoogle Scholar
Lin, S. & Spudich, J. A. (1974). Biochemical studies on the mode of action of cytochalasin B. Journal of Biological Chemistry 249, 5778–83.CrossRefGoogle ScholarPubMed
May, J. M. (1985). The inhibition of hexose transport by permeant and impermeant sulfhydryl agents in rat adipocytes. Journal of Biological Chemistry 260, 462–7.CrossRefGoogle ScholarPubMed
Mikkelsen, R. B., Tanabe, K. & Wallach, D. F. H. (1982). Membrane potential of Plasmodium-infected erythrocytes. Journal of Cell Biology 93, 685–9.CrossRefGoogle ScholarPubMed
Neame, K. D. & Homewood, C. A. (1975). Alteration in the permeability of mouse erythrocytes infected with the malaria parasite, Plasmodium berghei. International Journal for Parasitology 5, 537–40.CrossRefGoogle ScholarPubMed
Richards, W. H. G. & Williams, S. G. (1972). The removal of leucocytes from malaria infected blood. Annals of Tropical Medicine and Parasitology 67, 249–50.CrossRefGoogle Scholar
Rottenberg, H. (1986). Energetics of proton transport and secondary transport. Methods in Enzymology 125, 315.CrossRefGoogle ScholarPubMed
Sherman, I. W. (1979). Biochemistry of Plasmodium (malarial parasites). Microbiological Reviews 43, 453–95.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Tanigoshi, L. (1974). Glucose transport in the malarial (Plasmodium lophurae) infected erythrocyte. Journal of Protozoology 21, 603–7.CrossRefGoogle ScholarPubMed
Slayman, C. L. & Slayman, C. W. (1974). Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proceedings of the National Academy of Sciences, USA 71, 1935–9.CrossRefGoogle ScholarPubMed
Tanabe, K. (1983). Staining of Plasmodium yoelii-infected mouse erythrocytes with the fluorescent dye rhodamine 123. Journal of Protozoology 30, 707–10.CrossRefGoogle ScholarPubMed
Tanabe, K., Izumo, A. & Kageyama, K. (1986). Growth of Plasmodium falciparum in sodium-enriched human erythrocytes. American Journal of Tropical Medicine and Hygiene 35, 476–8.CrossRefGoogle ScholarPubMed
Tanabe, K., Mikkelsen, R. B. & Wallach, D. F. H. (1982). Calcium transport of Plasmodium chabaudi-infected erythrocytes. Journal of Cell Biology 93, 680–4.CrossRefGoogle ScholarPubMed
Taverna, R. D. & Langdon, R. G. (1973). Reversible association of cytochalasin B with the human erythrocyte membrane: inhibition of glucose transport and the stoichiometry of cytochalasin binding. Biochimica et Biophysica Acta 323, 207–19.CrossRefGoogle ScholarPubMed
Tripatara, A. & Yuthavong, Y. (1986). Effect of inhibitors on glucose transport in malaria (Plasmodium berghei) infected erythrocytes. International Journal for Parasitology 16, 441–6.CrossRefGoogle ScholarPubMed
White, M. K., Bramwell, M. E. & Harris, H. (1981). Hexose transport in hybrids between malignant and normal cells. Nature, London 294, 232–5.CrossRefGoogle ScholarPubMed
Widdas, W. F. (1980). The asymmetry of the hexose transfer system in the human red cell membrane. Current Topics in Membrane Transport 14, 165223.CrossRefGoogle Scholar
Winograd, E., Greenan, J. R. & Sherman, I. (1987). Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium yoelii. Proceedings of the National Academy of Sciences, USA 84, 1931–5.CrossRefGoogle Scholar
Wright, J. K., Seckler, R. & Overath, P. (1986). Molecular aspects of sugar: ion cotransport. Annual Review of Biochemistry 55, 225–48.CrossRefGoogle ScholarPubMed
Zilberstein, D. & Dwyer, D. M. (1985). Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proceedings of the National Academy of Sciences, USA 82, 1716–20.CrossRefGoogle ScholarPubMed