Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T19:27:24.008Z Has data issue: false hasContentIssue false

Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays

Published online by Cambridge University Press:  07 June 2007

G. SRIVIDYA
Affiliation:
Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
R. DUNCAN
Affiliation:
Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER, FDA, Bethesda, MD, USA
P. SHARMA
Affiliation:
Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
B. V. S. RAJU
Affiliation:
Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
H. L. NAKHASI
Affiliation:
Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER, FDA, Bethesda, MD, USA
P. SALOTRA*
Affiliation:
Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
*
*Corresponding author: Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delh-110029, India. Tel: +91 11 26166124. Fax: +91 11 26166124. E-mail: [email protected]

Summary

Leishmania donovani causes visceral disease (kala-azar), a major health problem throughout the tropics with 500 000 new cases every year. Leishmania differentiates from the promastigote to the amastigote form to establish infection in a mammalian host. To understand the process of differentiation, we assessed the global variation in gene expression in promastigotes, an intermediate stage of differentiation (PA24) and axenic amastigotes in culture using an L. donovani genomic microarray with 4224 clones printed in triplicate. During an intermediate stage of differentiation 24 h after shifting the promastigotes into amastigotes (PA24), there were 41 (∼1%) clones with expression ⩾2·0-fold higher than promastigotes, whereas in terminally differentiated amastigotes there were 130 (∼3%) such clones. Of particular interest were certain genes that exhibited a transient increase or decrease in expression at the PA24 stage. Kinases showed a transient increase, and surface molecules, PSA and amino acid permease, were prominent clones among those showing a brief decrease at the PA24 stage. The microarray results have been validated using Northern blots or RT-PCR. In summary, our results provide important clues about the genes involved in the differentiation process of L. donovani that may contribute to virulence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akopyants, N. S., Clifton, S. W., Martin, J., Pape, D., Wylie, T., Li, L., Kissinger, J. C., Roos, D. S. and Beverley, S. M. (2001). A survey of the Leishmania major Friedlin strain V1 genome by shotgun sequencing: a resource for DNA microarrays and expression profiling. Molecular and Biochemical Parasitology 113, 337340.CrossRefGoogle ScholarPubMed
Akopyants, N. S., Matlibs, R. S., Bukanova, E. N., Smeds, M. R., Brownstein, B. H., Stormo, G. D. and Beverley, S. M. (2004). Expression profiling using random genomic DNA microarray identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Molecular and Biochemical Parasitology 136, 7186.Google Scholar
Almeida, R., Gilmartin, B. J., McCann, S. H., Norrish, A., Ivens, A. C., Lawson, D., Levick, M. P., Smith, D. F., Dyall, S. D., Vetrie, D., Freeman, T. C., Coulson, R. M., Sampaio, I., Schneider, H. and Blackwell, J. M. (2004). Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Molecular and Biochemical Parasitology 136, 87100.CrossRefGoogle Scholar
Beetham, J. K., Donelson, J. E. and Dahlin, R. R. (2003). Surface glycoprotein PSA (GP46) expression during short and long-term culture of Leishmania chagasi. Molecular and Biochemical Parasitology 131, 109117.CrossRefGoogle Scholar
Boucher, N., Wu, Y., Dumas, C., Dube, M., Sereno, D., Breton, M. and Papadopoulou, B. (2002). A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3′-untranslated region element. Journal of Biological Chemistry 277, 1951119520.CrossRefGoogle ScholarPubMed
Brandau, S., Dresel, A. and Clos, J. (2003). High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania. The Biochemical Journal 310, 225232.CrossRefGoogle Scholar
Cheadle, C., Vawter, M. P., Freed, W. J. and Becker, K. G. (2003). Analysis of microarray data using Z-score transformation. Journal of Molecular Diagnostics 5, 7381.CrossRefGoogle ScholarPubMed
Coulson, R. M. R. and Smith, D. F. (1990). Isolation of genes showing increased or unique expression in the infective promastigotes of Leishmania major. Molecular and Biochemical Parasitology 40, 6376.CrossRefGoogle ScholarPubMed
Debrabant, A., Joshi, M. B., Pimenta, P. F. and Dwyer, D. M. (2004). Generation of axenic amastigotes: their growth and cultural characteristics. International Journal for Parasitology 34, 205317.Google Scholar
Desjeux, P. (2001). Worldwide increasing risk factors for leishmaniasis. Medical Microbiology and Immunology 190, 7779.CrossRefGoogle ScholarPubMed
Duncan, R., Alvarez, R., Jaffe, C., Wiese, M., Klutch, M., Shakarian, A., Dwyer, D. and Nakhasi, H. L. (2001). Early response gene expression during differentiation of cultured Leishmania donovani. Parasitology Research 87, 897906.CrossRefGoogle ScholarPubMed
Duncan, R., Salotra, P., Goyal, N., Akopyants, N., Beverley, S. M. and Nakhasi, H. L. (2004). The application of gene expression microarray technology to kinetoplastid research. Current Molecular Medicine 4, 611621.CrossRefGoogle ScholarPubMed
Dutoya, S., Gibert, S., Lemercier, G., Santarelli, X., Baltz, D., Baltz, T. and Bakalara, N. (2001). A novel C-terminal kinesin is essential for maintaining functional acidocalcisomes in Trypanosoma brucei. Journal of Biological Chemistry 276, 4911749124.Google Scholar
El-Sayed, N. M., Hegde, P., Quackenbush, J., Melville, S. E. and Donelson, J. E. (2000). The African trypanosome genome. International Journal for Parasitology 30, 329345.Google Scholar
Erdmann, M., Scholz, A., Melzer, I. M., Schmetz, C. and Wiese, M. (2006). Interacting protein kinases involved in regulation of flagellar length. Molecular Biology of the Cell 17, 20352045.CrossRefGoogle ScholarPubMed
Geraldo, M. V., Silber, A. M., Pereira, C. A. and Uliana, S. R. (2005). Characterization of a developmentally regulated amino acid transporter gene from Leishmania amazonensis. FEMS Microbiology Letters 242, 275280.CrossRefGoogle ScholarPubMed
Goyal, N., Duncan, R., Selvapandiyan, A., Debrabant, A., Baig, M. S. and Nakhasi, H. L. (2006). Cloning and characterization of angiotensin converting enzyme related dipeptidylcarboxypeptidase from Leishmania donovani. Molecular and Biochemical Parasitology 145, 147157.CrossRefGoogle ScholarPubMed
Holzer, R. T., McMaster, W. R. and Forney, J. D. (2006). Expression profiling by whole genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion derived amastigotes and axenic amastigotes in Leishmania mexicana. Molecular and Biochemical Parasitology 146, 198218.CrossRefGoogle ScholarPubMed
Imai, K., Mimori, T., Kawai, M. and Koga, H. (2005). Microarray analysis of host gene-expression during intracellular nests formation of Trypanosoma cruzi amastigotes. Microbiology and Immunology 49, 623631.CrossRefGoogle ScholarPubMed
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M. A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S. M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R. M., Cronin, A., Cruz, A. K., Davies, R. M., De Gaudenzi, J., Dobson, D. E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A. C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, S. K., Michaeli, S., Mottram, J. C., Muller-Auer, S., Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O'neil, S., Pentony, M., Pohl, T. M., Price, C., Purnelle, B., Quail, M. A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J. C., Rutter, S., Saunders, D., Schafer, M., Schein, J., Schwartz, D. C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S., Zimmermann, W., Smith, D. F., Blackwell, J. M., Stuart, K. D., Barrell, B. and Myler, P. J. (2005). The genome of the kinetoplastid parasite Leishmania major. Science 309, 436442.Google Scholar
Joshi, M., Dwyer, D. M. and Nakhasi, H. L. (1993). Cloning and characterization of differentially expressed genes from in vitro grown ‘amastigotes’ of Leishmania donovani. Molecular and Biochemical Parasitology 58, 345354.CrossRefGoogle ScholarPubMed
Kolodziejski, P. J., Musial, A., Koo, J. S. and Eissa, N. T. (2002). Ubiquitination of inducible nitric oxide synthase is required for its degradation. Proceedings of the National Academy of Sciences, USA 99, 1231512320.Google Scholar
Krobitsch, S., Brandau, S., Hoyer, C., Schmetz, C., Hubel, A. and Clos, J. (1998). Leishmania donovani heat shock protein 100: Characterization and function in amastigote stage differentiation. Journal of Biological Chemistry 273, 64886494.CrossRefGoogle ScholarPubMed
Lincoln, L. M., Ozaki, M., Donelson, J. E. and Beetham, J. K. (2004). Genetic complementation of Leishmania deficient in PSA (GP46) restores their resistance to lysis by complement. Molecular and Biochemical Parasitology 137, 185189.Google Scholar
Mitani, T., Terashima, M., Yoshimura, H., Nariai, Y. and Tanigawa, Y. (2005). TGF-beta 1 enhances degradation of IFN-gamma-induced iNOS protein via proteasomes in RAW 2647 cells. Nitric Oxide: Biology and Chemistry 13, 7887.Google Scholar
Piani, A., Ilg, T., Elefanty, A. G., Curtis, J. and Handman, E. (1999). Leishmania major proteophosphoglycan is expressed by amastigotes and has an immunomodulatory effect on macrophage function. Microbes and Infection 1, 589599.Google Scholar
Rodrigues, C. O., Scott, D. A. and Docampo, R. (1999). Presence of a vacuolar H+ pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+ ATPase. The Biochemical Journal 340, 759766.CrossRefGoogle ScholarPubMed
Salotra, P., Duncan, R. C., Singh, R., Subba Raju, B. V., Sreenivas, G. and Nakhasi, H. L. (2006). Upregulation of surface proteins in Leishmania donovani isolated from patients of post-kala-azar dermal leishmaniasis. Microbes and Infection 8, 637644.CrossRefGoogle ScholarPubMed
Salotra, P., Sreenivas, G., Pogue, G. P., Lee, N., Nakhasi, H. L., Ramesh, V. and Negi, N. S. (2001). Development of a species-specific PCR assay for detection of Leishmania donovani in clinical samples from patients with kala-azar and post-kala-azar dermal leishmaniasis. Journal of Clinical Microbiology 39, 849854.CrossRefGoogle ScholarPubMed
Saxena, A., Lahav, T., Holland, N., Aggarwal, G., Anupama, A., Huang, Y., Volpin, H., Myler, P. J. and Zilberstein, D. (2007). Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Molecular and Biochemical Parasitology, doi:10.1016/j.molbiopara.2006.11.011.Google Scholar
Saxena, A., Worthey, E. A., Yan, S., Leland, A., Stuart, K. D. and Myler, P. J. (2003). Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Molecular and Biochemical Parasitology 129, 103114.CrossRefGoogle ScholarPubMed
Sreenivas, G., Singh, R., Selvapandian, A., Negi, N. S., Nakhasi, H. L. and Salotra, P. (2004). Arbitrary-primed PCR for genomic fingerprinting and identification of differentially regulated genes in Indian isolates of Leishmania donovani. Experimental Parasitology 106, 110118.Google Scholar
Sundar, S. and Rai, M. (2002). Laboratory diagnosis of visceral leishmaniasis. Clinical Diagnostics and Lab Immunology 9, 951958.Google ScholarPubMed
Walker, J., Vasquez, J. J., Gomez, M. A., Drummelsmith, J., Burchmore, R., Girard, I. and Ouellette, M. (2006). Identification of developmentally regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Molecular and Biochemical Parasitology 147, 6473.CrossRefGoogle ScholarPubMed
Wiese, M. (1998). A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. The EMBO Journal 17, 26192628.CrossRefGoogle ScholarPubMed
Wiese, M., Kuhn, D. D. and Grünfelder, C. G. (2003). Protein kinase involved in flagellar-length control. Eukaryotic Cell 2, 769777.CrossRefGoogle ScholarPubMed
Wu, Y., El-Fakhry, Y., Sereno, D., Tamar, S. and Papadopoulou, B. (2000). A new developmentally regulated gene family in Leishmania amastigotes encoding a homolog of amastin surface proteins. Molecular and Biochemical Parasitology 110, 345357. www.geneDB.orgCrossRefGoogle ScholarPubMed
Yoshida, M. and Xia, Y. (2003). Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. Journal of Biological Chemistry 278, 3695336958.CrossRefGoogle ScholarPubMed
Young, J. A., Fivelman, Q. L., Blair, P. L., de la Vega, P., Le Roch, K. G., Zhou, Y., Carucci, D. J., Baker, D. A. and Winzeler, E. A. (2005). The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Molecular and Biochemical Parasitology 143, 6779.Google Scholar
Zamora-Veyl, F. B., Kroemer, M., Zander, D. and Clos, J. (2005). Stage-specific expression of the mitochondrial co-chaperonin of Leishmania donovani CPN10. Kinetoplastid Biology and Disease DOI: 10.1186/1475-9292-4-3.CrossRefGoogle ScholarPubMed
Zhang, W. W. and Matlashewski, G. (1997). Loss of virulence in Leishmania donovani deficient in an amastigote-specific protein A2. Proceedings of the National Academy of Sciences, USA 94, 88078811.Google Scholar
Zilberstein, D. and Shapira, M. (1994). The role of pH and temperature in the development of Leishmania parasites. Annual Review of Microbiology 48, 449470.CrossRefGoogle ScholarPubMed