Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T16:43:22.258Z Has data issue: false hasContentIssue false

Tick lectins: structural and functional properties

Published online by Cambridge University Press:  19 April 2005

L. GRUBHOFFER
Affiliation:
Institute of Parasitology, Academy of Sciences of the Czech Republic & Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
V. KOVÁŘ
Affiliation:
Institute of Parasitology, Academy of Sciences of the Czech Republic & Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
N. RUDENKO
Affiliation:
Institute of Parasitology, Academy of Sciences of the Czech Republic & Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic

Abstract

Few papers have been published on tick lectins so far, and therefore more data are needed to complete the mosaic of knowledge of their structural and functional properties. Tissue-specific lectin/haemagglutinin activities of both soft and hard ticks have been investigated. Some tick lectins are proteins with binding affinity for sialic acid, various derivatives of hexosamines and different glycoconjugates. Most tick lectin/haemagglutinin activities are blood meal enhanced, and could serve as molecular factors of self/non-self recognition in defence reactions against bacteria or fungi, as well as in pathogen/parasite transmission. Dorin M, the plasma lectin of Ornithodoros moubata, is the first tick lectin purified so far from tick haemolymph, and the first that has been fully characterized. Partial characterization of other tick lectins/haemagglutinins has been performed mainly with respect to their carbohydrate binding specificities and immunochemical features.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ADEMA, C. M., HERTEL, L. A., MILLER, R. D. & LOKER, E. S. ( 1997). A family of fibrinogen-related proteins that precipitates parasite-derived molecule is produced by an invertebrate after infection. Proceedings of the National Academy of Sciences, USA 94, 86918696.CrossRefGoogle Scholar
AKOV, S., SAMISH, M. & GALUN, R. ( 1976). Protease activity in female Ornithodoros tholozani ticks. Acta tropica 33, 3652.Google Scholar
BALASHOV, Y. S. ( 1972). Bloodsucking ticks (Ixodidae) – vector of disease of man and animals. Miscellaneous Publications of the Entomological Society of America 8, 161362.Google Scholar
BARONDES, S. H. ( 1988). Bifunctional properties of lectins: lectins redefined. Trends in Biochemical Sciences 12, 480482.CrossRefGoogle Scholar
BETTLER, B., HOFSTETTER, H., YOKOYAMA, W. M., KILCHHERR, F. & CONRAD, D. H. ( 1989). Molecular structure and expression of the murine lymphocyte low-affinity receptor for IgE (Fc epsilon RII). Proceedings of the National Academy of Sciences, USA 86, 75667570.CrossRefGoogle Scholar
BOYD, W. C. & SHAPLEIGH, E. ( 1954). Specific precipitating activity of plant agglutinins (lectins). Science 119, 419.CrossRefGoogle Scholar
CHEN, C. L. & BILLINGSLEY, P. F. ( 1999). Detection and characterization of a mannan-binding lectin from the mosquito, Anopheles stephensi (Liston). European Journal of Biochemistry 263, 360366.CrossRefGoogle Scholar
CHINZEI, Y. ( 1988). A new method for determining vitellogenin in hemolymph of female Ornithodoros moubata (Acari: Argasidae). Journal of Medical Entomology 25, 548550.CrossRefGoogle Scholar
CHINZEI, Y., CHINO, H. & TAKAHASHI, K. ( 1983). Purification and properties of vitellogenin and vitellin from a tick Ornithodoros moubata. Journal of Comparative Physiology 152B, 1321.CrossRefGoogle Scholar
CHINZEI, Y. & YANO, I. ( 1985). Fat body is the site of vitellogenin synthesis in the soft tick, Ornithodoros moubata. Journal of Comparative Physiology 155B, 671678.CrossRefGoogle Scholar
COLEMAN, J. E., GEBBIA, J. A., PIESMAN, J., DEGE, J. L., BUGGE, T. H. & BENACH, J. L. ( 1997). Plasminogen is required for efficient dissemination of Borrelia burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89, 11111119.CrossRefGoogle Scholar
DIMOPOULOS, G., CASAVANT, T. L., CHANG, S. R., SCHEETZ, T., ROBERTS, C., DONOHUE, M., SCHULZ, J., BENES, V., BORK, P., ANSORGE, W., SOARES, M. B. & KAFATOS, F. ( 2000). Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proceedings of the National Academy of Sciences, USA 97, 66196624.CrossRefGoogle Scholar
DODD, R. B. & DRICKAMER, K. ( 2001). Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11, 71R79R.CrossRefGoogle Scholar
doyle, r. j. & slifkin, m. (ed.) ( 1994). Lectin – Microorganism Interactions. Marcel Dekker, pp. 1104.
DRICKAMER, K. ( 1988). Two distinct classes of carbohydrate-recognition domains in animal lectins. Journal of Biological Chemistry 263, 95579560.Google Scholar
DRICKAMER, K. ( 1993). Evolution of Ca2+-dependent animal lectins. Progress in Nucleic Acid Research Molecular Biology 45, 207232.CrossRefGoogle Scholar
DRICKAMER, K., DORDAL, M. S. & REYNOLDS, L. ( 1986). Mannose-specific binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homlogy with pulmonary surfactant apoprotein. Journal of Biological Chemistry 261, 68786887.Google Scholar
DRICKAMER, K. & TAYLOR, M. E. ( 1993). Biology of animal lectins. Annual Review of Cell Biology 1999, 237264.CrossRefGoogle Scholar
DURNOVÁ, E. ( 1998). Gut agglutinins (lectins) of common sheep tick, Ixodes ricinus L. (Ixodida, Ixodidae): isolation and partial characterization. Master of Science thesis, University of South Bohemia, pp. 344. České Budějovice (in Czech).
EPSTEIN, J., EICHBAUM, Q., SHERIFF, S. & EZEKOWITZ, B. A. R. ( 1996). The collections in inmate immunity. Current Opinion in Immunology 8, 2935.CrossRefGoogle Scholar
ezekowitz, r. a. b., sastry, k. n. & reid, k. b. m. (ed.) ( 1996). Collectins and Innate Immunity. Heidelberg, Springer-Verlag.
FRIEDHOFF, K. T. ( 1990). Interaction between parasite and tick vector. International Journal for Parasitology 20, 525535.CrossRefGoogle Scholar
GADJEVA, M., THIEL, S. & JESENIUS, J. C. ( 2001). The mannan-binding lectin pathway of the innate immune response. Current Opinion in Immunology 13, 7478.CrossRefGoogle Scholar
GILBOA-GARBER, N. & GARBER, N. ( 1989). Microbial lectin cofunction with lytic activities as a model for a general basic lectin role. FEMS Microbiological Reviews 63, 211222.CrossRefGoogle Scholar
GOKUDAN, S., MUTA, T., TSUDA, R., KOORI, K., KAWAHARA, T., SEKI, N., MIZUNOE, Y., WAI, S. N., IWANAGA, S. & KAWABATA, S. I. ( 1999). Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proceedings of the National Academy of Sciences, USA 96, 1008610091.CrossRefGoogle Scholar
GOLDSTEIN, I. J., HUGHES, R. C., MONSIGNY, M., OSAWA, T. & SHARON, N. ( 1980). What should be called a lectin? Nature 285, 66.Google Scholar
GOMES, Y. M., FURTADO, A. F. & COELHO, L. B. B. ( 1991). Partial purification and some properties of hemolymph lectin from Panstrongylus megistus (Heteroptera: Reduviidae). Applied Biochemistry and Biotechnology 31, 97107.CrossRefGoogle Scholar
GOODING, R. H. ( 1972). Digestive processes of haematophagous insects. I. A literature review. Quaestiones Entomologicae 8, 560.Google Scholar
GRANDJEAN, O. ( 1984). Blood digestion in Ornithodoros moubata female. Acarologia 25, 147165.Google Scholar
GRUBHOFFER, L., GUIRAKHOO, F., HEINZ, F. X. & KUNZ, C. H. ( 1990). Interaction of tick-borne encephalitis virus protein E with labelled lectins. Lectins: Biology, Biochemistry and Clinical Biochemistry 7, 313319.Google Scholar
GRUBHOFFER, L., HYPšA, V. & VOLF, P. ( 1997). Lectins (agglutinins) in the gut of the important disease vectors. Parasite 4, 203216.CrossRefGoogle Scholar
GRUBHOFFER, L. & JINDRÁK, L. ( 1998). Lectin and tick–pathogen interactions: a minireview. Folia Parasitologica 45, 913.Google Scholar
GRUBHOFFER, L. & KOVÁŘ, V. ( 1998). Arthropod lectins: affinity approaches in the analysis and preparation of carbohydrate binding proteins. In Techniques in Insect Immunology FITC-5 ( ed. Wiesner, A., Dunphy, G. B., Marmaras, V. J., Morishima, I., Sugumaran, M. & Yamakawa, M.), pp. 4757. Fair Haven, New Jersey, SOS Publications.
GRUBHOFFER, L. & MAŤHA, V. ( 1991). New lectins of invertebrates. Zoological Science (Tokyo) 8, 10011003.Google Scholar
GRUBHOFFER, L., UHLÍŘ, J. & VOLF, P. ( 1993). Functional and structural identification of a new lectin activity of Borrelia recurrentis spirochetes. Comparative Biochemistry and Physiology 105B, 535540.CrossRefGoogle Scholar
GRUBHOFFER, L., VEREš, J. & DUSBÁBEK, F. ( 1991). Lectins as molecular factors of recognition and defence reaction of ticks. In Modern Acarology Vol. 2 ( ed. Dusbábek, F. & Bukva, V.), pp. 381388. The Hague, Academia, Prague and SPB Academic Publishing bv.
GUDDERRA, N. P., SONENSHINE, D. E., APPERSON, C. S. & ROE, R. M. ( 2002). Hemolymph proteins in ticks. Journal of Insect Physiology 48, 269278.CrossRefGoogle Scholar
GUPTA, A. P. ( 1985). Cellular elemments in the hemolymph. In Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 3 ( ed. Kerkut, G. A. & Gilbert, L. I.), pp. 401451. Oxford, Pergamon.
GUPTA, A. P. ( 1991). Insect immunocytes and other hemocytes: roles in cellular and humoral immunity. In Immunology of Insects and Other Arthropods ( ed. Gupta, A. P.), pp. 19118. Boca Ratan, CRC.
HALBERG, D. F., WAGER, R. E., FARELL, D. C., HILDRETH, J. 4th, QUESENBERRY, M. S., LOEB, J. A., HOLLAND, E. C. & DRICKAMER, K. ( 1987). Major and minor forms of the rat liver asialoglycoprotein receptor are independent galactose-binding proteins. Primary structure and glycosylation heterogeneity of minor receptor forms. Journal of Biological Chemistry 262, 98289838.Google Scholar
HOFFMANN, J. A. ( 1995). Innate immunity of insects. Current Opinion in Immunology 7, 410.CrossRefGoogle Scholar
HOFFMANN, J. A., KAFATOS, F. C., JANEWAY, C. A. & EZEKOWITZ, R. A. ( 1999). Phylogenetic perspectives in innate immunity. Science 284, 13131318.CrossRefGoogle Scholar
HULÍNSKÁ, D., VOLF, P. & GRUBHOFFER, L. ( 1992). Characterization of Borrelia burgdorferi glycoconjugates and surface carbohydrates. Zentralblat für Bakteriologie, Microbiologie und Hygiene A 276, 473480.CrossRefGoogle Scholar
HUTTON, D., REID, A. P. & TOWSON, S. ( 2000). Immune responses of the argasid tick Ornithodoros moubata induced by infection with the filarial worm Acanthocheilonema viteae. Journal of Helminthology 74, 233239.Google Scholar
HYPšA, V. & GRUBHOFFER, L. ( 1995). An LPS-binding hemagglutinin in the midgut of Triatoma infestans: partial characterization and tissue localization. Archives of Insect Biochemistry and Physiology 28, 247255.CrossRefGoogle Scholar
INGRAM, G. A. & MOLYNEUX, D. H. ( 1991). Insect lectins: role in parasite–vector interactions. In Lectin Reviews 1 ( ed. Kilpatrick, D. C., Van Driessche, R. E. & Bøg-Hansen, T. C.), pp. 103127. Sigma Chemical Company, St. Louis, MO, USA.
IWANAGA, S. ( 1993). The Limulus clotting reaction. Current Opinion in Immunology 5, 7482.CrossRefGoogle Scholar
IWANAGA, S. ( 2002). The molecular basis of innate immunity in the horseshoe crab. Current Opinion in Immunology 14, 8795.CrossRefGoogle Scholar
JACOBSON, R. L. & DOYLE, R. J. ( 1996). Lectin–parasite interactions. Parasitology Today 12, 5560.CrossRefGoogle Scholar
JOHNS, R., CERAUL, S., SONENSHINE, D. E. & HYNES, W. L. ( 2001 a). Tick immunity to microbial infections: control of representative bacteria in the hard tick Dermacentor variabilis (Acari: Ixodidae). In Acarology: Proceedings of the 10th International Congress ( ed. Halliday, R. B., Walter, D. E., Proctor, H. C., Norton, R. A. & Colloff, M. J.), pp. 638644. Melborne, CSIRO Publishing.
JOHNS, R., OHNISHI, J., BROADWATER, A., SONENSHINE, D. E., DE SILVA, A. M. & HYNES, W. L. ( 2001 b). Contrasts in tick innate immune response to Borrelia burgdorferi challenge: immunotolerance in Ixodes scapularis versus immunocompetence in Dermacentor variabilis (Acari: Ixodidae). Journal of Medical Entomology 38, 99107.Google Scholar
KAMWENDO, S. P., INGRAM, G. A., MUSISI, F. L. & MOLYNEUX, D. H. ( 1993). Haemagglutinin activity in tick (Rhipicephalus appendiculatus) haemolymph and extracts of gut and salivary glands. Annals of Tropical Medicine and Parasitology 87, 303305.CrossRefGoogle Scholar
KAMWENDO, S. P., MUSIS, F. L., TREES, A. J. & MOLYNEUX, D. H. ( 1995). Effect of haemagglutinin (lectin) inhibitory sugars in Theileria parva infection in Rhipicephalus appendiculatus. International Journal for Parasitology 25, 2935.CrossRefGoogle Scholar
KAWABATA, S. & TSUDA, R. ( 2002). Molecular basis of non-self recognition by the horshoe crab tachylectins. Biochimica et Biophysica Acta 1572, 414421.CrossRefGoogle Scholar
KAWASAKI, K., KUBO, T. & NATORI, S. ( 1996). Presence of the Periplaneta lectin-related protein family in the American cockroach Periplaneta americana. Insect Biochemistry and Molecular Biology 26, 355364.CrossRefGoogle Scholar
KENJO, A., TAKAHASHI, M., MATSUSHITA, M., ENDO, Y., NAKATA, M., MIZUOCHI, T. & FUJITA, T. ( 2001). Cloning and characterization of novel ficolins from the solitary ascidian, Halocynthia roretzi. Journal of Biological Chemistry 276, 1995919965.CrossRefGoogle Scholar
KOCOUREK, J. & HOŘEJšÍ, V. ( 1981). Defining a lectin. Nature 290, 188.CrossRefGoogle Scholar
KOVÁŘ, V., KOPÁČEK, P. & GRUBHOFFER, L. ( 2000). Isolation and characterization of Dorin M, a lectin from plasma of the soft tick Ornithodoros moubata. Insect Biochemistry and Molecular Biology 30, 195205.CrossRefGoogle Scholar
KUHN, K.-H., RITTING, M., HAUPL, T. & BURMESTER, G. R. ( 1994). Haemocytes of the tick Ixodes ricinus express coiling phagocytosis of Borrelia burgdorferi. Developmental Comparative Immunology 18, 115.Google Scholar
KUHN, K.-H., UHLÍŘ, J. & GRUBHOFFER, L. ( 1996). Ultrastructural localization of a sialic acid – specific hemolymph lectin in the hemocytes and other tissues of the hard tick Ixodes ricinus (Acari: Chelicerata). Parasitology Research 82, 215221.CrossRefGoogle Scholar
KURACHI, S., SONG, Z., TAKAGAKI, M., YANG, Q., WINTER, H. C., KURACHI, K. & GOLDSTEIN, I. J. ( 1998). Sialic acid-binding lectin from the slug Limax flavus: cloning, expression of the polypeptide, and tissue localization. European Journal of Biochemistry 254, 217222.CrossRefGoogle Scholar
KURTTI, T. J., MUNDERLOH, U. G., AHLSTRAND, G. G. & JOHNSON, R. C. ( 1988). Borrelia burgdorferi in tick cell culture: growth and cellular adherence. Journal of Medical Entomology 25, 256261.CrossRefGoogle Scholar
LEE, Y. C. ( 1992). Biochemistry of carbohydrate–protein interaction. FASEB Journal 6, 31933200.CrossRefGoogle Scholar
LEONARD, P. M., ADEMA, C. M., ZHANG, S.-M. & LOKER, E. S. ( 2001). Structure of two FREP genes that combine IgSF and fibrinogen domains, with comments on diversity of the FREP gene family in the snail Biomphalaria glabrata. Gene 269, 155165.CrossRefGoogle Scholar
LEONG, J. M., MORRISSEY, P. E., ORTEGA-MARIA, E., PEREIRA, M. E. A. & COBURN, J. ( 1995). Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi. Infection and Immunity 63, 874883.Google Scholar
LU, J. & LE, Y. ( 1998). Ficolins and the fibrinogen-like domain. Immunobiology 199, 190199.CrossRefGoogle Scholar
MANDAL, C. & MANDAL, C. ( 1990). Sialic acid-binding lectins. Experientia 46, 433441.CrossRefGoogle Scholar
MATSUSHITA, M. ( 1996). The lectin pathway of the complement system. Microbiology and Immunology 40, 887893.CrossRefGoogle Scholar
MATSUSHITA, M., ENDO, Y., NONAKA, M. & FUJITA, T. ( 2001). Activation of the lectin complement pathway by ficolins. International Immunopharmacology 1, 359363.CrossRefGoogle Scholar
MATSUSHITA, M., ENDO, Y., TAIRA, S., SATO, Y., FUJITA, T., ICHIKAWA, N. & MIZUOCHI, T. ( 1996). A novel human serum lectin with collagen- and fibrinogen-like domains that functions as an opsonin. Journal of Biological Chemistry 271, 24482454.CrossRefGoogle Scholar
MAUDLIN, I. & WELBURN, S. C. ( 1988). The role of lectin and trypanosome genotype in the maturation of midgut infections in Glossina morsitans. Tropical Medicine and Parasitology 39, 5658.Google Scholar
McEVER, R. P. ( 1994). Selectins. Current Opinion in Immunology 6, 7584.CrossRefGoogle Scholar
MULLINS, D. E. ( 1985). Chemistry and physiology of the hemolymph. In Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 3 ( ed. Kerkut, G. A. & Gilbert, L. I.), pp. 355400. Oxford, Pergamon.CrossRef
MUNDERLOH, U. G. & KURTTI, T. J. ( 1995). Cellular and molecular interrelationships between ticks and prokaryotic tick/borne pathogens. Annual Review of Entomology 40, 221243.CrossRefGoogle Scholar
MUTA, T., MIYATA, T., TOKUNAGA, F., NAKAMURA, T., TOH, Y., IKEHARA, Y. & IWANAGA, S. ( 1991). Limulus factor-C – an endotoxin-sensitive serine protease zymogen with a mosaic structure of complement-like, epidermal growth factor-like, and lectin like domains. Journal of Biological Chemistry 266, 65546561.Google Scholar
NAKAJIMA, Y., VAN DER GOES VAN NATERS-YASUI, A., TAYLOR, D. & YAMAKAWA, M. ( 2001). Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochemistry and Molecular Biology 31, 747751.CrossRefGoogle Scholar
OFEK, I. & SHARON, N. ( 1988). Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lectin in the phagocytosis of bacteria. Infection and Immunity 56, 539547.Google Scholar
OLAFSEN, J. A. ( 1986). Invertebrate lectins: biochemical heterogeneity as a possible key to their biological function. In Immunity in Invertebrates ( ed. Brehélin, M.), pp. 95111. Berlin, Heidelberg, Springer Verlag.CrossRef
OLAFSEN, J. A. ( 1996). Lectins: model of natural and induced molecules in invertebrates. In Advances in Comparative and Environmental Physiology Vol. 24 ( ed. Cooper, E. L.), pp. 4976. Heidelberg, Springer Verlag.CrossRef
PALÁNOVÁ, L. & VOLF, P. ( 1997). Carbohydrate-binding specificities and physico-chemical properties of lectins in various tissues of phlebotominae sandflies. Folia Parasitologica 44, 7176.Google Scholar
PARVEEN, N. & LEONG, J. M. ( 2000). Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Molecular Microbiology 35, 12201234.CrossRefGoogle Scholar
PEARSON, M. A. ( 1996). Scavenger receptors in innate immunity. Current Opinion in Immunology 8, 2028.CrossRefGoogle Scholar
PEREIRA, M. A. E., ANDRADE, A. F. B. & RIBEIRO, J. M. C. ( 1981). Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science 211, 597600.CrossRefGoogle Scholar
PEUMANS, W. J. & VAN DAMME, E. J. M. ( 1995). Lectins as plant defense proteins. Plant Physiology 109, 347352.CrossRefGoogle Scholar
RATCLIFFE, N. A., NIGAM, Y., MELLO, C. B., GARCIA, E. S. & AZAMBUJA, P. ( 1996). Trypanosoma cruzi and erythrocyte agglutinins: a comparative study of occurrence and properties in the gut and hemolymph of Rhodnius prolixus. Experimental Parasitology 83, 8393.CrossRefGoogle Scholar
RATCLIFFE, N. A. & ROWLEY, A. F. ( 1987). Insect responses to parasites and other pathogens. In Immune Responses in Parasitic Infections Vol. 4 ( ed. Soulsby, E. J. L.), pp. 271332. Boca Raton, CRC Press Inc.
RATCLIFFE, N. A., ROWLEY, A. F., FITZGERALD, S. W. & RHODES, C. P. ( 1985). Invertebrate immunity: basic concepts and recent advances. International Review of Cytology 97, 183349.CrossRefGoogle Scholar
RHODES, J. M. & MILTON, J. D. ( 1998). Lectin Methods and Protocols. Totowa, New Jersey, Humana Press.
RIBEIRO, J. M. C., MATHER, T. N., PIESMAN, J. & SPIELMAN, A. ( 1987). Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodiae). Journal of Medical Entomology 24, 201205.Google Scholar
RUDENKO, N., GOLOVCHENKO, N. & GRUBHOFFER, L. ( 2000). Lectin-like sequences in genome of Borrelia burgdorferi. Folia Parasitologica 46, 8190.Google Scholar
SASTRY, K. & EZEKOWITZ, R. A. ( 1993). Collectins pattern recognition molecules involved in first line host defense. Current Opinion in Immunology 5, 5966.CrossRefGoogle Scholar
SHARON, N. & LIS, H. ( 1988). A century of lectin research (1888–1988). Trends in Biochemical Sciences 12, 488491.Google Scholar
SHARON, L. & LIS, H. ( 1989). Lectins. London, New York, Chapman and Hall.CrossRef
SLIFKIN, M. & DOYLE, R. J. ( 1990). Lectins and their application to clinical microbiology. Clinical Microbiology Reviews 3, 197217.CrossRefGoogle Scholar
SMITH, R. D., SELLS, D. M., STEPHENSON, E. M., RISTIC, M. & HUXDOLL, D. L. ( 1976). Development of Ehrlichia canis, causative richettsia. American Journal of Veterinary Research 37, 119126.Google Scholar
TAYLOR, M. E., CONARY, J. T., LENNERTZ, M. R., STAHL, P. D. & DRICKAMER, K. ( 1990). Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. Journal of Biological Chemistry 265, 1215612162.Google Scholar
THIEL, S. & REID, K. B. M. ( 1989). Structures and functions associated with the group of mammalian lectins containing collagen-like sequences. FEBS Letters 250, 7884.CrossRefGoogle Scholar
UHLÍŘ, J., GRUBHOFFER, L., BORSKÝ, I. & DUSBÁBEK, F. ( 1994). Antigens and glycoproteins of larvae, nymphs and adults of the tick Ixodes ricinus. Medical Veterinary Entomology 8, 141150.CrossRefGoogle Scholar
UHLÍŘ, J., GRUBHOFFER, L. & VOLF, P. ( 1996). Novel agglutinin in the midgut of the tick Ixodes ricinus. Folia Parasitologica 43, 233239.Google Scholar
VASTA, G. R. ( 1991). The multiple biological roles of invertebrate lectins: their participation in nonself recognition mechanisms. In Phylogenesis of Immune Functions ( ed. Warr, G. W. & Cohen, N.), pp. 183199. Boca Raton, CRC Press Inc.
VASTA, G. R., AHMED, H., FINK, N. E., ELOLA, M. T., MARSH, A. G., SNOWDEN, A. & ODOM, E. W. ( 1994). Animal lectins as self/non-self recognition molecules. Biochemical and genetic approaches to understanding their roles and evolution. Annals of the New York Academy of Sciences 712, 5573.CrossRefGoogle Scholar
VASTA, G. R., AHMED, H. & QUESENBERRY, M. S. ( 1996). Invertebrate C-type lectins and pentraxins as non-self recognition molecules. In New Directions in Invertebrate Immunology ( ed. Söderhäll, K., Iwanaga, S. & Vasta, G. R.), pp. 189227. Fair Haven, New Jersey, SOS Publications.
VASTA, G. R. & MARCHALONIS, J. J. ( 1983). Humoral recognition factors in the arthropoda. The specificity of chelicerate serum lectins. American Zoology 23, 157171.Google Scholar
VASTA, G. R. & MARCHALONIS, J. J. ( 1984). Summation: immunobiological significance of invertebrate lectins. Progress in Clinical Biological Research 154, 177191.Google Scholar
VASTA, G. R., QUESENBERRY, M. S., AHMED, H. A. & O'LEARY, N. ( 1999). C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Developmental Comparative Immunology 23, 401420.CrossRefGoogle Scholar
VEREš, J. & GRUBHOFFER, L. ( 1990). Detection and partial characterization of a new plasma lectin in the hemolymph of the tick Ornithodoros tartakovskyi. Microbios Letters 45, 6164.Google Scholar
VOLF, P. ( 1993). Lectin activity in the gut extract of sandfly Lutzomyia longipalpis. Folia Parasitologica 40, 155156.Google Scholar
VOLF, P., KILLICK-KENDRICK, R., BATES, P. & MOLYNEUX, D. H. ( 1994). Comparison of the haemagglutination activities in the gut and head extracts of various species and geographical populations of phlebotominae sandflies. Annals of Tropical Medicine and Parasitology 88, 337340.CrossRefGoogle Scholar
VOLF, P., šKAŘUPOVÁ, S. & MAN, P. ( 2002). Characterization of the lectin from females of Phlebotomus duboscqi sandflies. European Journal of Biochemistry 269, 62946301.CrossRefGoogle Scholar
WAGNER, M. ( 1990). Sialic acid specific lectins. Advances in Lectin Research 3, 3682.Google Scholar
WALLBANKS, K. R., INGRAM, G. A. & MOLYNEUX, D. H. ( 1986). The agglutination of erythrocytes and Leishmania parasites by sandfly gut extracts: evidence for lectin activity. Tropical Medicine and Parasitology 37, 409413.Google Scholar
WELBURN, S. C. & MAUDLIN, I. ( 1990). Haemolymph lectin and the maturation of trypanosome infections in tsetse. Medical and Veterinary Entomology 4, 4348.CrossRefGoogle Scholar
XU, X. & DOOLITTLE, R. F. ( 1990). Presence of a vertebrate fibrinogen-like sequence in an echinoderm. Proceedings of the National Academy of Sciences, USA 87, 20972101.CrossRefGoogle Scholar
YEATON, R. W. ( 1982 a). Invertebrate lectins: I. Occurrence. Developmental Comparative Immunology 5, 391402.Google Scholar
YEATON, R. W. ( 1982 b). Invertebrate lectins: II. Diversity of specificity, biological synthesis and function in recognition. Developmental Comparative Immunology 5, 535545.Google Scholar
YOSHIZAKI, N. ( 1990). Functions and properties of animal lectins. Zoological Science (Tokyo) 7, 581591.Google Scholar
ZENG, F. Y. & GABIUS, H. J. ( 1992). Sialic acid-binding proteins: characteriazation, biological function and application. Zeitschrift für Naturforschung C 47, 641653.Google Scholar
ZUNG, J. L., LEWENGRUB, S., RUDZINSKA, M. A., SPIELMAN, A., TELFORD, S. R. & PIESMAN, J. ( 1989). Fine structural evidence for the penetration of the Lyme disease spirochete Borrelia burgdorferi through the gut and salivary tissues of Ixodes dammini. Canadian Journal of Zoology 67, 17371748.CrossRefGoogle Scholar