Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T21:09:12.371Z Has data issue: false hasContentIssue false

Systematic temporal changes in host susceptibility to infection: demographic mechanisms

Published online by Cambridge University Press:  06 April 2009

H. I. McCallum
Affiliation:
Department of Pure and Applied Biology, Imperial College, London University, London SW7 2BB
R. M. Anderson
Affiliation:
Department of Pure and Applied Biology, Imperial College, London University, London SW7 2BB

Summary

Simple mathematical models are developed to examine the influence of variability in host susceptibility to infection, on the dynamics of host–parasite population interactions. When hosts differ in their innate susceptibility (at birth), to infection by a specific parasite, the average susceptibility of the host population as a whole may show systematic changes through time. Such patterns may arise as a result of demographic factors associated with the interaction between host and parasite populations, in the absence of inheritance mechanisms (a genetic component) or acquired resistance (an immunological component). The general significance of this observation is discussed in terms of the coevolution of host–parasite associations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M. (1978). The regulation of host population growth by parasitic species. Parasitology 76, 119–58.CrossRefGoogle ScholarPubMed
Anderson, R. M. (1982). Parasite dispersion patterns: generative mechanisms and dynamic consequences. In Aspects of Parasitology (ed. Meerovitch, E.), pp. 140. Montreal: Institute of Parasitology, McGill University.Google Scholar
Anderson, R. M. & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373–98.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219–47.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1979). Population biology of infectious diseases. Part I. Nature, London 280, 361–7.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1982 a). Directly transmitted infectious diseases: control by vaccination. Science 215, 1053–60.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1982 b). Coevolution of hosts and parasites. Parasitology 85, 411–26.CrossRefGoogle ScholarPubMed
Anderson, R. M., Whitfield, P. J. & Dobson, A. P. (1978). Experimental studies of infection dynamics: infection of the definitive host by the cercariae of Transversotrema patialense. Parasitology 77, 189200.CrossRefGoogle ScholarPubMed
Bartlett, M. S. (1957). Measles periodicity and community size. Journal of the Royal Statistical Society, Series A 120, 4870.CrossRefGoogle Scholar
Blackwell, J., Freeman, J. & Bradley, D. J. (1980). Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature London 283, 72–4.CrossRefGoogle ScholarPubMed
Boomer, W. F. (1980). The HLA system and diseases. Journal of the Royal College of Physicians: London 14, 4350.Google Scholar
Bradley, D. J. (1980). Genetics of resistance to infection with special reference to leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 143–6.CrossRefGoogle Scholar
Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology 62, 179–94.CrossRefGoogle Scholar
Hamilton, W. D. (1980). Sex versus non-sex versus parasite. Oikos 35, 282–90.CrossRefGoogle Scholar
Hamilton, W. D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science 218, 384–7.CrossRefGoogle Scholar
Keymer, A. E. & Anderson, R. M. (1979). The dynamics of infection of Tribolium confusum by Hymenolepis diminuta: the influence of infective-stage density and spatial distribution. Parasitology 79, 195207.CrossRefGoogle ScholarPubMed
May, R. M. (1975). Stability and Complexity in Model Ecosystems. (2nd ed.) Princeton: Princeton University Press.Google Scholar
May, R. M. & Anderson, R. M. (1978). Regulation and stability of host parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology 47, 249–68.CrossRefGoogle Scholar
May, R. M. & Anderson, R. M. (1979). Population biology of infectious diseases. Part II. Nature, London 280, 455–61.CrossRefGoogle ScholarPubMed
May, R. M. & Anderson, R. M. (1983). Epidemiology and genetics in the coevolution of parasites and hosts. Proceedings of the Royal Society of London B 219, 281313.Google ScholarPubMed
McCallum, H. I. (1982). Infection dynamics of Ichthyophthirius multifiliis. Parasitology 85, 455–88.CrossRefGoogle Scholar
Minchella, D. H. & Loverde, P. T. (1983). Laboratory comparison of the relative success of Biomphalaria glabrata stocks which are susceptible and insusceptible to infection with Schistosoma mansoni. Parasitology 86, 335–44.CrossRefGoogle ScholarPubMed
Moran, P. A. P. (1968). An Introduction to Probability Theory, Oxford: Clarendon.Google Scholar
Nisbet, R. M. & Gurney, W. S. C. (1981). Modelling Fluctuating Populations. New York: John Wiley.Google Scholar
O'Brien, A. D., Rosenstreich, D. L., Scher, I., Campbell, G. H., MacDermott, R. P. & Formal, S. B. (1980). Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. Journal of Immunology 124, 20–6.CrossRefGoogle ScholarPubMed
Pielou, E. C. (1969). An Introduction to Mathematical Ecology. New York: Wiley-Interscience.Google Scholar
Plant, J. E. & Glynn, A. A. (1982). Genetic control of resistance to Salmonella typhimurium infection in high and low antibody responder mice. Clinical experimental Immunology 50, 283–90.Google ScholarPubMed
Skamene, E., Gros, P., Forget, A., Kongshavn, P. A. L., StCharles, C. & Taylor, B. A. (1982). Genetic regulation of resistance to intracellular pathogens. Nature, London 297, 506509.CrossRefGoogle ScholarPubMed
Taylor, L. R., Woiwod, I. D. & Perry, J. N. (1979). The negative binomial as a dynamic ecological model for aggregation, and the density dependence of k. Journal of Animal Ecology 48, 289304.CrossRefGoogle Scholar
Wakelin, D. (1978). Genetic control of susceptibility and resistance to parasitic infection. Advances in Parasitology 16, 219308.CrossRefGoogle ScholarPubMed