Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T04:53:34.282Z Has data issue: false hasContentIssue false

Susceptibility of Brugia malayi and Onchocerca lienalis microfilariae to nitric oxide and hydrogen peroxide in cell-free culture and from IFNγ-activated macrophages

Published online by Cambridge University Press:  06 April 2009

M. J. Taylor
Affiliation:
Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
H. F. Cross
Affiliation:
Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
A. A. Mohammed
Affiliation:
Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
A. J. Trees
Affiliation:
Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
A. E. Bianco
Affiliation:
Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK

Summary

The susceptibility of Brugia malayi and Onchocerca lienalis microfilariae to H2O2 and NO either in cell-free culture or from IFNγ-activated macrophages was examined. In cell-free culture, O. lienalis microfilariae were highly susceptible to H2O2 induced toxicity, exhibiting rapid reductions in motility and viability. The addition of exogenous catalase abrogated H2O2-induced killing. In contrast, B. malayi microfilariae were relatively resistant to H2O2, with concentrations as high as 50 μM having no effect on motility or viability. On exposure to NO, both species showed reductions in motility within 5–30 min, but longer was required to see effects on the viability of microfilariae. Parasites incubated with IFNγ-activated macrophages also exhibited marked reductions in motility and viability. In cultures with B. malayi and activated macrophages, inhibition of these effects was achieved by the addition of either L-NMMA, to abolish NO production, or neutralizing anti-TNFα antibodies. Attempts to inhibit parasite killing by the addition of catalase to macrophage cultures were ineffective. The results of this study show that B. malayi and O. lienalis microfilariae have different susceptibility to H2O2, but are equally affected by exposure to NO. Moreover both species are killed by IFNγ-activated macrophages and in the case of B. malayi, killing is dependent on the generation of NO via TNFα.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addiss, D. G., Dimock, K. A., Eberhard, M. L. & Lammie, P. J. (1995). Clinical, parasitologic, and immunologic observations of patients with hydrocele and elephantiasis in an area with endemic filariasis. Journal of Infectious Diseases 171, 755–8.CrossRefGoogle Scholar
Bianco, A. E., Ham, P., El Sinnary, K. & Nelson, G. S. (1980). Large-scale recovery of Onchocerca microfilariae from naturally infected cattle and horses. Transactions of the Royal Society for Tropical Medicine and Hygiene 74, 109–10.Google Scholar
Bianco, A. E., Nwachukwu, M. A., Townson, S., Doenhoff, M. J. & Muller, R. L. (1986). Evaluation of drugs against Onchocerca microfilariae in an inbred mouse model. Tropical Medicine and Parasitology 37, 3945.Google Scholar
Brattig, N. W., Tischendorf, F. W., Strote, G. & Medina-De-La-Garza, C. E. (1991). Eosinophil-larval interaction in onchocerciasis: heterogeneity of in vitro adherence of eosinophils to infective third and fourth stage larvae and microfilariae of Onchocerca volvulus. Parasite Immunology 13, 1322.CrossRefGoogle ScholarPubMed
Butterworth, A. E. (1984). Cell-mediated damage to helminths. In Advances in Parasitology Vol. 23 (ed. Baker, J. R. & Muller, R.), pp. 143235. London: Academic Press.Google Scholar
Callahan, H. L., Crouch, R. K. & James, E. R. (1988). Helminth anti-oxidant enzymes: a protective mechanism against host oxidants? Parasitology Today 4, 218–25.CrossRefGoogle ScholarPubMed
Callahan, H. L., Crouch, R. K. & James, E. R. (1990). Hydrogen peroxide is the most toxic oxygen species for Onchocerca cervicalis microfilariae. Parasitology 100, 407–15.CrossRefGoogle ScholarPubMed
Comley, J. C. W., Rees, M. J., Turner, C. H. & Jenkins, D. C. (1989). Colorimetric quantification of filarial viability. International Journal for Parasitology 19, 7783.CrossRefGoogle Scholar
Ding, A. H., Nathan, C. F. & Stuehr, D. J. (1988). Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Journal of Immunology 141, 2407–12.CrossRefGoogle ScholarPubMed
Elson, L. H., Calvopina, M. H., Paredes, W. Y., Edmundo, A. N., Bradley, J. E., Guderian, R. H. & Nutman, T. B. (1995). Immunity to onchocerciasis: putative immune persons produce a Th1-like response to Onchocerca volvulus. Journal of Infectious Diseases 171, 652–8.CrossRefGoogle ScholarPubMed
Folkard, S. G. & Bianco, A. E. (1995). Roles for both CD4+ and CD8+ T cells in protective immunity against Onchocerca lienalis microfilariae in the mouse. Parasite Immunology (in the Press).CrossRefGoogle ScholarPubMed
Gazzinelli, R. T., Oswald, I. P., James, S. & Sher, A. (1992). IL-10 inhibits parasite killing and nitrogen oxide production by IFNγ activated macrophages. Journal of Immunology 148, 1792–6.CrossRefGoogle Scholar
Greene, B. M., Taylor, H. R. & Aikawa, M. (1981). Cellular killing of microfilariae of Onchocerca volvulus: eosinophil and neutrophil-mediated immune serum-dependent destruction. Journal of Immunology 127, 1611–18.CrossRefGoogle ScholarPubMed
Hobbs, A. J., Fukuto, J. M. & Ignarro, L. J. (1994). Formation of free nitric oxide from L-arginine by nitric oxide synthase: direct enhancement of generation by superoxide dismutase. Proceedings of the National Academy of Sciences, USA 91, 10992–6.CrossRefGoogle ScholarPubMed
James, E. R., McLean, D. C. & Perler, F. (1994). Molecular cloning of an Onchocerca volvulus extracellular Cu-Zn superoxide dismutase. Infection and Immunity 62, 713–16.CrossRefGoogle ScholarPubMed
Liew, F. Y. & Cox, F. E. G. (1991). Non-specific defence mechanism: the role of nitric oxide. In Immunoparasitology Today (ed. Ash, C. & Gallagher, R.), pp. A17–A21. Cambridge: Elsevier Trends Journals.Google Scholar
Maizels, R. M. & Lawrence, R. A. (1991). Immunological tolerance: the key feature in human filariasis? Parasitology Today 7, 271–6.CrossRefGoogle ScholarPubMed
Maizels, R. M., Sartono, E., Kurniawan, A., Partono, F., Selkirk, M. E. & Yazdanbakhsh, M. (1995). T-Cell activation and the balance of antibody isotypes in human lymphatic filariasis. Parasitology Today 11, 50–6.CrossRefGoogle ScholarPubMed
McCall, J. W., Malone, J. B., Ah, H. S. & Thompson, P. E. (1973). Mongolian jirds (Meriones unguiculatus) infected with Brugia pahangi by the intraperitoneal route: a rich source of developing larvae, adult filariae and microfilariae. Journal of Parasitology 59, 436.Google Scholar
Medina-De-La-Garza, C. E., Brattig, N. W., Tischendorf, F. W. & Jarret, J. M. B. (1990). Serum-dependent interaction of granulocytes with Onchocerca volvulus microfilariae in generalised and chronic hyper-reactive onchocerciasis and its modulation by diethylcarbamazine. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 701–6.CrossRefGoogle ScholarPubMed
Nathan, C. (1992). Nitric oxide as a secretory product of mammalian cells. FASEB Journal 6, 3051–64.Google Scholar
Oswald, I. P., Wynn, T. A., Sher, A. & James, S. (1992 a). Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor α required as a costimulatory factor for interferon γ-induced activation. Proceedings of the National Academy of Sciences, USA 89, 8676–80.CrossRefGoogle ScholarPubMed
Oswald, I. P., Gazzinelli, R. T., Sher, A. & James, S. (1992 b). IL-10 synergizes with IL-4 and transforming growth factor-β to inhibit macrophage cytotoxic activity. Journal of Immunology 148, 3578–82.CrossRefGoogle ScholarPubMed
Oswald, I. P., Eltoum, I., Wynn, T. A., Schwartz, B., Caspar, P., Paulin, D., Sher, A. & James, S. (1994). Endothelial cells are activated by cytokine treatment to kill an intravascular parasite, Schistosoma mansoni, through the production of nitric oxide. Proceedings of the National Academy of Sciences, USA 91, 9991003.CrossRefGoogle ScholarPubMed
Ottesen, E. A. (1992). Infection and disease in lymphatic filariasis: an immunological perspective. Parasitology 104, S71–S79.CrossRefGoogle ScholarPubMed
Ottesen, E. A. (1995). Immune responsiveness and the pathogenesis of human onchocerciasis. Journal of Infectious Diseases 171, 659–71.CrossRefGoogle ScholarPubMed
Ou, X., Tang, L., McCrossan, M., Henkle-Dührsen, K. & Selkirk, M. E. (1995 a). Brugia malayi: localisation and differential expression of extracellular and cytoplasmic CuZn superoxide dismutases in adults and microfilariae. Experimental Parasitology 80, 515–29.CrossRefGoogle ScholarPubMed
Ou, X., Thomas, G. R., Chacon, M. R., Tang, L. & Selkirk, M. E. (1995 b). Brugia malayi: differential susceptibility to and metabolism of hydrogen peroxide in adults and microfilariae. Experimental Parasitology 80, 530–40.CrossRefGoogle ScholarPubMed
Pearlmann, E., Kroeze, W. K., Hazlett, F. E., Chen, S. A., Mawhorter, S. D., Boom, W. H. & Kazura, J. (1993). Brugia malayi: acquired resistance to microfilariae in BALB/c mice correlates with local Th2 responses. Experimental Parasitology 76, 200–8.Google Scholar
Pearlmann, E., Heinzel, F. P., Hazlett, F. E. & Kazura, J. (1995). IL-12 modulation of T helper responses to the filarial helminth, Brugia malayi. Journal of Immunology 154, 4658–64.CrossRefGoogle Scholar
Rzepczyk, C. & Bishop, C. J. (1984). Immunological and ultrastructural aspects of the cell-mediated killing of Dirofilaria immitis microfilariae. Parasite Immunology 6, 4433–57.CrossRefGoogle ScholarPubMed
Sartono, E., Kruize, Y. C. M., Kurniawan, A., Van Der Meide, P. H., Partono, F., Maizels, R. M. & Yazdanbakhsh, M. (1995). Elevated cellular immune responses and interferon-γ release after long-term diethylcarbamazine treatment of patients with human lymphatic filariasis. Journal of Infectious Diseases 171, 1683–7.CrossRefGoogle ScholarPubMed
Selkirk, M. E., Tang, L., Ou, X., Cookson, E. & Chacon, M. R. (1994). Filarial anti-oxidant enzymes: mediators of parasite persistence and potential targets for vaccination. Parasite 1, 1920.Google Scholar
Soboslay, P. T., Luder, C. G. K., Hoffmann, W. H., Michaelis, I., Helling, G., Heuschkel, C., Dreweck, C. M., Blanke, C. H., Pritze, S., Banla, M. & Schultz-Key, H. (1994). Ivermectin-facilitated immunity in onchocerciasis: activation of parasite-specific Th1-type responses with subclinical Onchocerca volvulus infection. Clinical and Experimental Immunology 96, 238–44.CrossRefGoogle ScholarPubMed
Tang, L., Ou, X., Henkle-Dührsen, K. & Selkirk, M. E. (1994). Extracellular and cytoplasmic CuZn superoxide dismutases from Brugia lymphatic filarial nematode parasites. Infection and Immunity 62, 961–7.CrossRefGoogle ScholarPubMed
Taylor, D. W., Goddard, J. M. & McMahon, J. E. (1984). Isolation and purification of microfilariae from nodules of Onchocerca volvulus. Transactions of the Royal Society for Tropical Medicine and Hygiene 78, 707–8.CrossRefGoogle ScholarPubMed