Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T21:23:24.799Z Has data issue: false hasContentIssue false

Superoxide dismutase from Ascaris suum

Published online by Cambridge University Press:  06 April 2009

M. Sanchez-Moreno
Affiliation:
Instituto ‘López-Neyra’ de Parasitología, C.S.I.C. Sección de Bioquímica, c/ Ventanilla 11, Granada-18002, Spain
M. Monteoliva
Affiliation:
Instituto ‘López-Neyra’ de Parasitología, C.S.I.C. Sección de Bioquímica, c/ Ventanilla 11, Granada-18002, Spain
A. Fatou
Affiliation:
Instituto ‘López-Neyra’ de Parasitología, C.S.I.C. Sección de Bioquímica, c/ Ventanilla 11, Granada-18002, Spain
M. A. García-Ruiz
Affiliation:
Instituto ‘López-Neyra’ de Parasitología, C.S.I.C. Sección de Bioquímica, c/ Ventanilla 11, Granada-18002, Spain

Summary

Three superoxide dismutases (SOD) (EC 1.15.1.1) were detected in homogenates of Ascaris suum. Each of the three forms of SOD was purified by a sequence of multiple differential centrifugations, ammonium sulphate precipitation, ion-exchange chromatography and G-75 Sephadex column chromatography. The three forms of SOD were present in different cellular locations; one in the cytoplasmic fraction, sensitive to cyanide and hydrogen peroxide, and two in the mitochondrial fraction, one of which was cyanide sensitive. The SOD forms presented clear differences in their electrophoretic patterns. The sexual organs of females showed the highest SOD activities of all the tissues examined. The finding of such high levels of superoxide dismutase in A. suum reflects the importance of this enzyme in the metabolism of this helminth parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agatsuma, T. & Habe, S. (1985). Paragonimus ohirai: genetic control of tetrazolium oxidase isozymes. Experimental Parasitology 60, 309–13.CrossRefGoogle ScholarPubMed
Anderson, G. L. (1982). Superoxide activity in dauerlarvae of Caenorhabditis elegans. Canadian Journal of Zoology 60, 288–91.CrossRefGoogle Scholar
Ayala, F. J., Powell, J. R., Tracey, M. L., Mourao, C. A. & Perez-Salas, F. (1972). Enzyme variability in the Drosophila williston group. Genetics 70, 113–39.CrossRefGoogle Scholar
Blum, J. & Fridovich, I. (1983). Superoxide hydrogen peroxide, and oxygen toxicity in two free-living nematode species. Archives of Biochemistry and Biophysics 222, 3543.CrossRefGoogle ScholarPubMed
Chensue, S. W., Kunkel, S. L., Higashi, G. I., Ward, P. A. & Boros, D. L. (1983). Production of superoxide anions, prostaglandins, and hydroxyeicosatetraenoic acids by macrophages from hypersensitivity-type (Schistosoma mansoni) and foreign body-type granulomas. Infection and Immunity 42, 1116–25.CrossRefGoogle ScholarPubMed
Fairfield, A. S., Meschnick, S. R. & Eaton, J. W. (1983). Malaria parasites adopt host cell superoxide dismutase. Science 221, 764–6.CrossRefGoogle ScholarPubMed
Fehrnstrom, H. & Moberg, U. (1977). SDS and conventional polyacrylamide gel electrophoresis with LKB 2117 Multiphor. Application Note 306.Google Scholar
Geller, B. L. & Winge, D. R. (1983). A method for distinguishing Cu, Zn, and Mn-containing superoxide dismutase. Analytical Biochemistry 128, 8692.CrossRefGoogle Scholar
Kazura, J. W. & Meshnick, S. R. (1984). Scavenger enzymes and resistance to oxygen mediated. Molecular and Biochemical Parasitology 10, 110.CrossRefGoogle ScholarPubMed
Leid, R. W. & Suquet, C. M. (1986). A superoxide dismutase of metacestodes of Taenia taeniaeformis. Molecular and Biochemical Parasitology 18, 301–11.CrossRefGoogle ScholarPubMed
Lindmark, D. G. & Muller, M. (1974). Superoxide dismutase in the anaerobic flagellates, Trichomonas loctus and Monocarcomonas sp. Journal of Biological Chemistry 249, 4634–7.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
McCord, J. M. & Fridovich, I. (1969). Superoxide dismutase: and enzymic function for erythrocuprein. Journal of Biological Chemistry 244, 6049–55.CrossRefGoogle ScholarPubMed
Meshnick, S. R. & Eaton, J. W. (1981). Leishmanial superoxide dismutase a possible target for chemotherapy. Biochemical and Biophysical Research Communications 102, 970–6.CrossRefGoogle ScholarPubMed
Meshnick, S., Simon, M., Falk, A., Grady, R. & Letrang, N. (1986). Irreversible Inhibitors of Iron Superoxide Dismutase: Potential Anti-trypanosomal Agents, (ed. Rotilio, G.). Amsterdam: Elsevier.Google Scholar
Paul, J. M. & Barrett, J. (1980). Peroxide metabolism in the cestodes Hymenolepis diminuta and Moniezia expansa. International Journal for Parasitology 10, 121–4.CrossRefGoogle Scholar
Poulik, M. L. (1957). Starch gel electrophoresis in a discontinuous system of buffers. Nature, London 180, 1477–8.CrossRefGoogle Scholar
Rhoads, M. L. (1983). Trichinella spiralis: identification and purification of superoxide dismutase. Experimental Parasitology 56, 4154.CrossRefGoogle ScholarPubMed
Sanchez-Moreno, M., Leon, P., García-Ruiz, M. A. & Monteoliva, M. (1987). Superoxide dismutase in Nematodes. Journal of Helminthology 46, 1216.Google Scholar