Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T17:51:08.141Z Has data issue: false hasContentIssue false

Study on ovine abortion associated with Toxoplasma gondii in affected herds of Khorasan Razavi Province, Iran based on PCR detection of fetal brains and maternal serology

Published online by Cambridge University Press:  28 April 2011

M. RASSOULI
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
G. R. RAZMI*
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran Center of Excellence in Ruminant Abortion and Neonatal Mortality, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
M. R. BASSAMI
Affiliation:
Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
A. R. MOVASSAGHI
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran Center of Excellence in Ruminant Abortion and Neonatal Mortality, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
M. AZIZZADEH
Affiliation:
Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
*
*Corresponding author: Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Khorasan Razavi Province, 9177948974, Iran. Tel: +985118803700. Fax: +985118763852. E-mail: [email protected]

Summary

Toxoplasma gondii, an obligatory intracellular protozoan parasite, is one of the causative agents of ovine abortion, as reported in many countries. Different techniques are being used to detect this pathogen in infected ovine fetuses. One of the most sensitive and specific diagnostic techniques is Nested-PCR amplification of the B1 target gene of the organism. In total, 200 brain samples of aborted ovine fetuses and maternal sera submitted from different parts of Khorasan Razavi province, Iran were investigated to track the role of Toxoplasma gondii in ovine abortion by a slightly modified Nested-PCR and IFAT assays, respectively. Among all samples, 27 (13·5%) were PCR-positive and 31 (15·5%) were IFAT-positive and the Toxoplasma-induced abortion prevalence calculated was 8·8% to18·2% with 95% confidence interval. Results show that high levels of congenital transmission may occur in 27/31(87%) of pregnancies with an excellent logical agreement (ĸ=0·9) between 2 different tests. According to the results of this study, the Nested-PCR employed in this investigation could be recommended as an applied routine test for the routine examination and confirmation of Toxoplasma gondii-induced ovine abortion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, Y. F., Sokkar, S. M., Desouky, H. M. and Soror, A. H. (2008). Abortion due to Toxoplasmosis in small ruminants. Global Veterinaria 2, 337342.Google Scholar
Blewett, D. A. and Watson, W. A. (1983). The epidemiology of ovine toxoplasmosis. II. Possible sources of infection in outbreaks of clinical disease. British Veterinary Journal 139, 546555.CrossRefGoogle ScholarPubMed
Burg, J. L., Grover, Ch. M., Pouletty, P. and Boothroyd, J. C. (1989). Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. Journal of Clinical Microbiology 27, 17871792.Google Scholar
Buxton, D. (1991). Toxoplasmosis. In Diseases of Sheep, 2nd Edn (ed. Martin, , , W. B. and Aitken, I. D.), pp. 4958. Blackwell Scientific Publications, Oxford, UK.Google ScholarPubMed
Buxton, D., Maley, S. W., Wright, S. E., Rodger, S., Bartley, P. and Innes, E. A. (2007). Toxoplasma gondii and ovine toxoplasmosis: new aspects of an old story. Veterinary Parasitology 149, 2528. doi: 10.1016/j.vetpar.2007.07.003.CrossRefGoogle ScholarPubMed
Charleston, W. A. G. (1994). Toxoplasma and other protozoan infections of economic importance in New Zealand. New Zealand Journal of Zoology 21, 6781.CrossRefGoogle Scholar
Clyde, A. and Kirkbride, C. A. (1993). Diagnosis in 1,784 ovine abortions and stillbirths. Journal of Veterinary Diagnostic Investigation 5, 398402.Google Scholar
Dubey, J. P. and Kirkbride, C. A. (1990). Toxoplasmosis and other causes of abortions in sheep from north central United States. Journal of the American Veterinary Medicine Association 196, 287290.Google Scholar
Dubey, J. P., Sonn, R. J., Hedstorm, O., Snyder, S. P. and Lassen, E. D. (1990). Serologic and histologic diagnosis of toxoplasmic abortion in sheep in Oregon. Journal of the American Veterinary Medicine Association 196, 291294.Google Scholar
Dubey, J. P. (2009). Toxoplasmosis in sheep-The last 20 years. Veterinary Parasitology 163, 114. doi: 10.1016/j.vetpar.2009.02.026.CrossRefGoogle ScholarPubMed
Duncanson, P., Terry, R. S., Smith, J. E. and Hide, G. (2001). High levels of congenital transmission of Toxoplasma gondii in a commercial sheep flock. International Journal for Parasitology 31, 16991703.Google Scholar
Esteban-Redondo, I. and Innes, E. A. (1998). Detection of Toxoplasma gondii in tissues of sheep orally challenged with different doses of oocysts. International Journal for Parasitology 28, 14591466.Google Scholar
Evans, H. E. and Sack, W. O. (1973). Prenatal development of domestic and laboratory mammals: growth curves, external features and selected refrences. Anatomia Histologia Embryologia 2, 1145.Google Scholar
Fleiss, J. L., Levin, B. and Paik, M. C. (2003). Statistical Methods for Rates and Proportions, 3rd Edn, John Wiley, Hoboken, USA.CrossRefGoogle Scholar
Givens, M. D. and Marley, M. S. D. (2008). Infectious causes of embryonic and fetal mortality. Theriogenology 70, 270285.Google Scholar
Gutierrez, J., O'Donovan, J., Williams, E., Proctor, A., Brady, C., Marques, P. X., Worrall, S., Nally, J. E., McElroy, M., Bassett, H., Sammin, D., Buxton, D., Maley, S. and Markey, B. K. (2010). Detection and quantification of Toxoplasma gondii in ovine maternal and foetal tissues from experimentally infected pregnant ewes using real-time PCR. Veterinary Parasitology 172, 815. doi:10.1016/j.vetpar. 2010.04.035.Google Scholar
Hamidinejat, H., Goraninejad, S., Ghorbanpoor, M., Nabavi, L. and Akbarnejad, F. (2008). Role of Toxoplasma gondii in abortion of ewes in Ahvaz (South-West Iran). Bulletin of Veterinary Institution Pulawy 52, 369371.Google Scholar
Hartley, W. J., Jebson, J. L. and McFarlane, D. (1954). New Zealand type II abortion in ewes. Australian Veterinary Journal 30, 216218.Google Scholar
Hide, G., Morley, E. K., Hughes, J. M., Gerwash, O. M., Elmahaishi, S., Elmahaishi, K. H., Thomasson, D., Wright, E. A., Williams, R. H., Murphy, R. G. and Smith, J. E. (2009). Evidence for high levels of vertical transmission in Toxoplasma gondii. Parasitology 136, 18771885.CrossRefGoogle ScholarPubMed
Hurtado, A., Aduriz, G., Moreno, B., Barandika, J. and García-Pérez, A. L. (2001). Single tube nested PCR for the detection of Toxoplasma gondii in fetal tissues from naturally aborted ewes. Veterinary Parasitology 102, 1727.CrossRefGoogle ScholarPubMed
Innes, E. A., Barley, P. M., Buxton, D. and Katzer, F. (2009). Ovine toxoplasmosis. Parasitology 136, 18871894. doi: 10.1017/S0031182009991636.Google Scholar
Jauregui, L. H., Higgins, J., Zarlenga, D., Dubey, J. P. and Lunney, J. K. (2001). Development of a Real-time PCR assay for detection of Toxoplasma gondii in pig and mouse tissues. Journal of Clinical Microbiology 39, 20652071.Google Scholar
Johnston, W. S. (1988). An investigation into toxoplasmosis as a cause of barrenness in ewes. Veterinary Record 122, 283284.Google Scholar
Jones, C. D., Okhravi, N., Adamson, P., Tasker, Sh. and Lightman, S. (2000). Comparison of PCR detection methods for B1, P30, and18S rDNA genes of T. gondii in aqueous humor. Investigative Ophthalmology & Visual Science 41, 634644.Google Scholar
Linklater, K. A. (1979). Abortion in sheep. Veterinary Record 1, 3033.Google Scholar
Masala, G., Porch, R., Madau, L., Tanda, A., Ibba, B., Satta, G. and Tola, S. (2003). Survey of ovine and caprine toxoplasmosis by IFAT and PCR assays in Sardinia, Italy. Veterinary Parasitology 117, 1521.CrossRefGoogle ScholarPubMed
Mason, S., Quinnell, R. Q. and Smith, J. E. (2010). Detection of Toxoplasma gondii in lambs via PCR screening and serological follow-up. Veterinary Parasitology 69, 258263. doi: 10.1016/j.vetpar.2010.01.021.CrossRefGoogle Scholar
Morley, E. K., Williams, R. H., Hughes, J. M., Terry, R. S., Duncanson, P., Smith, J. E. and Hide, G. (2005). Significant familial differences in the frequency of abortion and Toxoplasma gondii infection within a flock of Charollais sheep, Parasitology 131, 15. doi: 10.1017/S0031182005007614.CrossRefGoogle ScholarPubMed
Morley, E. K., Williams, R. H., Hughes, J. M., Thomasson, D., Terry, R. S., Duncanson, P., Smith, J. E. and Hide, G. (2007). Evidence that primary infection of Charollais sheep with Toxoplasma gondii may not prevent fetal infection and abortion in subsequent lambings. Parasitology 135, 169173.CrossRefGoogle Scholar
Oporto, B., Barandika, J. F., Hurtado, A., Aduriz, G., Moreno, B. and Garcia-Perez, A. L. (2006). Incidence of ovine abortion by Coxiella burnetii in Northern Spain. Annals of the New York Academy of Science 1078, 498501.Google Scholar
Ortega-Morta, L. M., Gottstein, B., Conraths, F. G. and Buxton, D. (2007). Protozoal Abortion in Farm Ruminants, Guidelines for Diagnosis and Control. CABI Publishing, Wallingford, Oxon, UK.CrossRefGoogle Scholar
Pereira-Bueno, J., Quintanilla-Gozalo, A., Pérez-Pérez, V., Álvarez-García, G., Collantes-Fernández, E. and Ortega-Mora, L. M. (2004). Evaluation of ovine abortion associated with Toxoplasma gondii in Spain by different diagnostic techniques. Veterinary Parasitology 121, 3343.CrossRefGoogle ScholarPubMed
Plant, J. W., Beh, K. J. and Acland, H. M. (1972). Laboratory findings from ovine abortion and perinatal mortality. Australian Veterinary Journal 48, 558561.CrossRefGoogle ScholarPubMed
Razmi, G. R. and Rahbari, S. (2001). Comparative study of three tests (modified direct agglutination test, indirect immunofluorescent antibody test and dye test) for detection of antibodies to Toxoplasma gondii in sheep sera. Iranian Journal of Veterinary Research 1, 1219.Google Scholar
Razmi, G. R., Ghezi, K., Mahouti, A. and Naseri, Z. (2010). A serological study and subsequent isolation of Toxoplasma gondii from aborted ovine fetuses in Mashhad area, Iran. The Journal of Parasitology 96, 1517. doi: 10.1645/GE-2428.1.Google Scholar
Sheryl, L., Clyde, S., Kirkbride, A. and Dubey, J. P. (1989). Comparison of enzyme-linked immunosorbent assay, indirect fluorescent antibody test, and direct agglutination test for detecting Toxoplasma gondii antibodies in naturally aborted ovine fetuses. Journal of Veterinary Diagnostic Investigation 1, 124127.Google Scholar
Sreekumar, C., Rao, J. R., Mishra, A. K., Ray, D., Joshi, P. and Singh, R. K. (2004). Detection of toxoplasmosis in experimentally infected goats by PCR. Veterinary Record 154, 632635.Google Scholar
Szeredi, L., Jánosi, Sz., Tenk, M., Tekes, L., Bozsó, M., Deim, Z. and Molnár, T. (2006). Epidemiological and pathological study on the causes of abortion in sheep and goats in Hungary (1998–2005). Acta Veterinaria Hungarica l54, 3438.Google Scholar
Williams, R. H., Morley, E. K., Hughes, J. M., Duncanson, P., Terry, R. S., Smith, J. E. and Hide, G. (2005). High levels of congenital transmission of Toxoplasma gondii in longitudinal and cross-sectional studies on sheep farms provides evidence of vertical transmission in ovine hosts. Parasitology 130, 301307. doi: 10.1017/S0031182004006614.CrossRefGoogle ScholarPubMed
Wu, L., Chen, S., Jiang, X. and Cao, J. (2009). Toxoplasma gondii: A simple Real-time PCR assay to quantify the proliferation of the apicoplast. Experimental Parasitology 123, 384387. doi: 10.1016/j.exppara.2009. 08.013.CrossRefGoogle ScholarPubMed