Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T01:01:50.577Z Has data issue: false hasContentIssue false

Studies on the nature and properties of the perienteric fluid of Ascaris lumbricoides

Published online by Cambridge University Press:  06 April 2009

W. P. Rogers
Affiliation:
Molteno Institute, University of Cambridge

Extract

1. The composition of the perienteric fluid of Ascaris lumbricoides of the pig, immediately after removal from the host and after varying periods of in vitro starvation, is recorded.

2. Apart from the more frequently observed constituents of invertebrate tissue fluids, the body fluid of Ascaris was found to contain ascorbic acid, amino sugar and small amounts of uronic acid.

3. Large amounts of anion other than chloride, probably fatty acid, must have been present in the body fluid, though chloride was probably the predominant anion in fluids of parasites which had passed several days of in vitro life.

4. The chief factors (starvation, osmotic pressure and the nature of the medium, etc.) affecting the composition of the body fluid are briefly discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1945

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abderhalden, E. (1908). Textbook of Physiological Chemistry. New York.Google Scholar
Baldwin, E. (1943). Parasitology. 35, 89.CrossRefGoogle Scholar
de Beer, E. J., Johnston, C. G. & Wilson, D. W. (1935). J. Biol. Chem. 108, 113.Google Scholar
Berenblum, I. & Chain, E. (1938). Biochem. J. 32, 295.CrossRefGoogle Scholar
Bethe, A., Berger, E. (1931). Pflüg. Arch. ges. Physiol. 227, 571.CrossRefGoogle Scholar
von Brand, T. (1934). Z. vergl. Physiol. 21, 220.CrossRefGoogle Scholar
von Brand, T. (1938). Biodynamica. 2, 1.Google Scholar
Burstein, A. I. (1929). Biochem. Z. 216, 449.Google Scholar
Chitwood, B. G. (1936). Proc. Helm. Soc. Wash. 3, 39.Google Scholar
Clark, W. G., Levitan, N. I., Gleason, D. F. & Greguss, G. (1942). J. Biol. Chem. 145, 85.CrossRefGoogle Scholar
Dreguss, M. (1931). Biochem. Z. 233, 375.Google Scholar
Dukes, H. (1937). The Physiology of Domestic Animals. New York.Google Scholar
Eden, A. & Green, H. H. (1940). Biochem. J. 34, 1202.CrossRefGoogle Scholar
Elliot, K. A. & Keilin, D. (1934). Proc. Boy. Soc. B. 114, 210.Google Scholar
Elson, L. & Morgan, W. (1933). Biochem. J. 27, 1824.CrossRefGoogle Scholar
Elvehjem, C., Steenbook, H. & Hart, E. B. (1929). J. Biol. Chem. 83, 21.CrossRefGoogle Scholar
Fauré-Fremiet, E. (1913). Arch. Anat. Micr. 15, 435.Google Scholar
Flury, F. (1912). Arch. exp. Path. Pharmak. 67, 275.Google Scholar
Flury, F. (1913). Arch. exp. Path. Pharmak. 73, 164.CrossRefGoogle Scholar
Greenberg, D. M. & Mackey, M. A. (1932). J. Biol. Chem. 96, 419.Google Scholar
Greenberg, D. M., Anderson, C. & Tufts, E. V. (1935). J. Biol. Chem. 111, 561.CrossRefGoogle Scholar
Hagedorn, H. C. & Jensen, B. N. (1923). Biochem. Z. 135, 46.Google Scholar
Hanson, S. W., Mills, G. T. & Williams, R. T. (1944). Biochem. J. 38, 274.CrossRefGoogle Scholar
Harnisch, O. (1935). Z. vergl. Physiol. 22, 50.CrossRefGoogle Scholar
Harnisch, O. (1937). Z. vergl. Physiol. 24, 667.CrossRefGoogle Scholar
Hill, G. R. & Smyth, J. D. (1944). Nature, Lond.. 153, 21.Google Scholar
Hill, R. (1930). Proc. Boy. Soc. B. 107, 205.Google Scholar
Hirsch, G. C. (1939). Form und Stoffwechsel der Golgi-Körper. Berlin.Google Scholar
Keilin, D. & Mann, T. (1940). Biochem. J. 34, 1163.CrossRefGoogle Scholar
Koidzumi, M. (1935). Trans. Far-East Ass. Trop. Med., 9th Congr. 1, 589.Google Scholar
Koizumi, T. (1935). Sci. Rep. Tôhoku. Univ. 10, 269.Google Scholar
Krogh, A. (1939). Osmotic Regulation in Aquatic Animals. Cambridge.Google Scholar
Krüger, F. (1936). Zool. Jb. Abt. 3. 57, 1.Google Scholar
Krüger, F. (1937). Z. vergl. Physiol. 24, 687.Google Scholar
Macallum, A. B. (1903). J. Physiol. 29, 213.Google Scholar
Maluf, N. S. (1939). Quart. Rev. Biol. 14, 149.Google Scholar
Mozołowski, W. (1940). Biochem. J. 34, 823.CrossRefGoogle Scholar
M'Kendrick, J. (1889). Textbook of Physiology. New York.Google Scholar
Mueller, J. F. (1927). J. Parasit. 14, 131.Google Scholar
Mueller, J. F. (1929). Z. Zellforsch. 8, 361.Google Scholar
Nakagawa, M. (1930). Kieũ Igaku. 10, 12.Google Scholar
Oesterlin, M. (1937). Z. vergl. Physiol. 25, 88.Google Scholar
Palmer, J. W., Smyth, E. M. & Meyer, K. (1937). J. Biol. Chem. 119, 491.Google Scholar
Pirie, N. W. (1936). Brit. J. Exp. Path. 17, 269.Google Scholar
Pregl, F. (1895). Arch. ges. Physiol. 61, 359.CrossRefGoogle Scholar
Richter, D., Croft, P. G. (1943). Biochem. J. 37, 706.CrossRefGoogle Scholar
Schulte, H. (1917). Pflüg. Arch, ges Physiol. 166, 1.CrossRefGoogle Scholar
Schopfer, W. H. (1932). Rev. Suisse Zool. 39, 59.Google Scholar
Sendroy, J. (1937). J. Biol. Chem. 120, 335.CrossRefGoogle Scholar
Sendroy, J. (1937 a). J. Biol. Chem. 120, 405.CrossRefGoogle Scholar
Sobel, A. E., Kraus, G. & Kramer, B. (1941). J. Bio Chem. 140, 501.Google Scholar
Somogyi, M. (1927). J. Biol. Chem. 75, 33.Google Scholar
Somogyi, M. (1937). J. Biol. Chem. 117, 771.CrossRefGoogle Scholar
Toryu, Y. (1936). Sci. Rep. Tohoku Univ. 10, 687.Google Scholar
Van Slyke, D. & Hawkins, J. (1928). J. Biol. Chem. 79, 739.CrossRefGoogle Scholar
Veirordt, K. H. (1893). Anatomische, physiologisch und physikalische Daten und Tabeln. Jena.Google Scholar
Weinbach, A. P. (1935). J. Biol. Chem. 110, 95.CrossRefGoogle Scholar
Weinland, E. (1901). Z. Biol. 42, 55.Google Scholar
Weinland, E. (1904). Z. Biol. 45, 517.Google Scholar