Published online by Cambridge University Press: 06 April 2009
The egg-shell of Hammerschmidtiella diesingi and Aspiculuris tetraptera reduces the rate of water loss from the egg when exposed to desiccation. Staining of the enclosed larva by acid fuchsin and the collapse of eggs exposed to desiccation indicate that the permeability barrier is heat labile. This suggests that the lipid layer is the main permeability barrie of the shell. The complex structure of the uterine layers has a similar morphology to the respiratory structures of the chorion of some insect eggs. Reflections from the shell, the rate of embryonic development under various conditions and the penetration of lead ions indicate that the shell does not trap a layer of air when immersed in water and the uterine layers cannot, therefore, function as a plastron network. Calculations indicate that if diffusion is limited to the pores in the external uterine layer, the area available for gaseous exchange is reduced by 85·5% in H. diesingi, 95·6% in A. tetraptera and 96·8% in Syphacia obvelata. It is suggested that the uterine layers of oxyurid egg-shells function in a similar fashion to the pores in bird egg-shells and the aeropyles in the chorion of insect egg-shells which do not possess plastron networks. These structures reduce water loss from the egg whilst ensuring an adequate supply of oxygen for embryonic development.