Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T22:45:53.314Z Has data issue: false hasContentIssue false

Structure and ultrastructure of muscle systems within Grillotia erinaceus metacestodes (Cestoda: Trypanorhyncha)

Published online by Cambridge University Press:  06 April 2009

S. M. Ward
Affiliation:
Department of Biology, The University of Ulster, Shore Road, Newtownabbey, Co. Antrim BT37 0QB, N., IE
G. McKeer
Affiliation:
Department of Biology, The University of Ulster, Shore Road, Newtownabbey, Co. Antrim BT37 0QB, N., IE
J. M. Allen
Affiliation:
Department of Biology, The University of Ulster, Shore Road, Newtownabbey, Co. Antrim BT37 0QB, N., IE

Summary

Three distinct muscle types have been identified within the metacestode of Grillotia erinaceus. These consist of peripheral somatic myofibres plus two muscle systems directly involved in parasite attachment to the host, i.e. the tentacular bulb and its antagonistic retractor muscle. In common with other cestodes the somatic muscle consists of smooth-type fibres running longitudinally and obliquely to the main body axis. The retractor muscle consists of myofibres with centrally displaced nuclei. Upon contraction these latter fibres become spirally orientated causing the muscle to coil and lateral membranes to become elevated as spikes. Definitive nerve processes have not been identified within somatic or retractor muscle. Individual tentacular bulbs form the proximal terminus for a closed hydraulic system. Each bulb consists of overlapping, contrarotating myofibres which display obvious striations; the striations appear in alternate fibres to be in transverse and oblique planes. Adjacent myofibres are separated by approximately 0·5 μm, possess abundant mitochondria and have shallow t-tubules plus associated vesicles of sarcoplasmic reticulum at each Z line. Thick myofilaments are surrounded by 13, shared, thin myofilaments. Close neuronal control for the bulb muscle is suggested by the presence of obvious motor end-plates which contain both lucent and dense neurovesicles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chapman, H. D. (1973). The functional organisation and fine structure of the tail musculature of the cercariae of Cryptocotyle lingua and Himasthla secunda. Parasitology 66, 487–97.CrossRefGoogle Scholar
Hess, E. (1980). Ultrastructural study of the tetrathyridium of Mesocestoides corti: tegument and parenchyma. Zeitschrift für Parasitenkunde 61, 135–59.Google Scholar
Johnstone, J. (1912). Tetrarhynchus erinaceus I. Structure of larva and adult worm. Parasitology 4, 364415.Google Scholar
Lumsden, R. D. & Byram, J. (1967). The ultrastructure of cestode muscle. Journal of Parasitology 53, 326–42.Google Scholar
Lumsden, R. D. & Foor, W. E. (1968). Electron microscopy of schistosome cercarial muscle. Journal of Parasitology 54, 780–94.Google Scholar
Lumsden, R. D. & Hildreth, M. B., (1983). The fine structure of adult tapeworms. In Biology of the Eucestoda, vol. 1 (ed. C., Arme and Pappas, P. W.), pp. 177233. London: Academic Press.Google Scholar
Lumsden, R. D. & Specian, R. (1980). The morphology, histology and fine structure of the adult stage of the cyclophyllidean tapeworm Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta (ed. Arai, M. P.). London: Academic Press.Google Scholar
McKerr, G. (1985). The fine structure and physiology of a trypanorhynch tapeworm. Ph.D. thesis. Queen's University of Belfast, Northern Ireland.Google Scholar
Maxwell, M. H. (1978). An on grid method for the specific demonstration of glycogen in electron microscopy. Medical Laboratory Sciences 35, 201–2.Google Scholar
Moran, I., McKerr, G. & Allen, J. M. (1984). Ultrastructural studies on the musculature of a gill fluke, Diclidophora merlangi. Proceedings of the Royal Microscopical Society 19, 21–2.Google Scholar
Nuttman, K. J. (1974). The fine structure and organisation of the tail musculature of the cercaria of Schistosoma mansoni. Parasitology 68, 147–59.CrossRefGoogle ScholarPubMed
Pintner, T. (1880). Untersuchungen ueber den Bau des Bandwurmkörpers mit besonderer Berück sichtigung der Tetrabothsien und Tetrarhynchen. Arbeiten aus den zoologischen Instituten der Universität Wien 3, 163242.Google Scholar
Rees, F. G. (1975). The arrangement and ultrastructure of the musculature, nerves and epidermis, in the tail of the cercaria of Cryptocotyle lingua from Littorina littorea. Proceedings of the Royal Society of London, B 190, 165–86.Google Scholar
Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17, 208.Google Scholar
Shaw, M. K. (1979). Ultrastructure of the clamp wall of the monogenean gill parasite Gastrocotyle trachuri. Zeitschrift für Parasitenkunde 58, 243–58.Google Scholar
Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26, 31.CrossRefGoogle ScholarPubMed
Toida, N., Kuriyama, H., Tashiro, N. & Ito, Y. (1975). Obliquely striated muscle. Physiological Reviews 55, 700–56.CrossRefGoogle ScholarPubMed
Ward, S. M., Allen, J. M. & McKerr, G. (1984). Fine structure and innervation of attachment muscle in the tapeworm, Orillotia erinaceus. Journal of Microscopy 19, (Suppl.).Google Scholar
Ward, S. M., Allen, J. M. & McKerr, G. (1986 a). Neuromuscular physiology of Grillotia erinaceus metacestodes (Cestoda: Trypanorhyncha) in vitro. Parasitology 93, 121–32.CrossRefGoogle Scholar
Ward, S. M., Allen, J. M. & McKerr, G. (1986 b). Action of praziquantel on Grillotia erinaceus metacestodes (Cestoda: Trypanorhyncha) in vitro. Parasitology 93, 133–42.CrossRefGoogle Scholar
Webb, R. A. (1982). Innervation of muscle in the cestode Hymenolepis microstoma. Molecular and Biochemical Parasitology, ICOPA Abstract (Suppl.), pp. 151–2.Google Scholar