Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T19:56:43.008Z Has data issue: false hasContentIssue false

Site selection of Acanthochondria cornuta (Copepoda: Chondracanthidae) in Platichthys flesus (Teleostei: Pleuronectidae)

Published online by Cambridge University Press:  18 May 2011

F. I. CAVALEIRO*
Affiliation:
Universidade do Porto, Faculdade de Ciências, Departamento de Biologia, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal CIMAR Laboratório Associado/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
M. J. SANTOS
Affiliation:
Universidade do Porto, Faculdade de Ciências, Departamento de Biologia, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal CIMAR Laboratório Associado/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
*
*Corresponding author: Universidade do Porto, Faculdade de Ciências, Departamento de Biologia, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal. Tel: +351 220 402 805. Fax: +351 220 402 709. E-mail: [email protected]

Summary

Acanthochondria cornuta (Copepoda: Chondracanthidae) (N=4841; prevalence: 80·0%; mean±s.d. [range] intensity: 28·8±24·0 [1–110] parasites) infected the branchial chambers of the European flounder, Platichthys flesus (L.), (N=210) according to an established spatial pattern. This was independent of host size. Higher intensities resulted, most frequently, in higher numbers of infection sites, probably due to increased intraspecific competition. Preferential infection of the ocular side was supported by the recorded abundance data and reflected, probably, the fish's bottom-dwelling behaviour. As the parasite develops from one stage into another, it seems to migrate towards different sites: the copepodites and pre-adult females occurred, mainly, in the holobranchs; the adults preferred the internal wall (non-gravid/post-gravid females; adult males) or the pseudobranchs (gravid females). The ventilating water current along with the blood supply are suggested as 2 major factors in determining parasite spatial distribution within the chamber. Parasite crowding in a restricted and narrow space of the posterior region of the internal wall was recorded frequently and resembled that previously reported for the plaice. Differences to other host-parasite systems previously studied should relate with the anatomy of the respiratory apparatus. Bigamous females are reported for the first time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Cavaleiro, F. I. and Santos, M. J. (2007). Survey of the metazoan ectoparasites of the European flounder Platichthys flesus (Linnaeus, 1758) along the north-central Portuguese coast. Journal of Parasitology 93, 12181222.CrossRefGoogle ScholarPubMed
Cavaleiro, F. I. and Santos, M. J. (2009). Seasonality of metazoan ectoparasites in marine European flounder Platichthys flesus (Teleostei: Pleuronectidae). Parasitology 136, 855865.CrossRefGoogle ScholarPubMed
Geets, A., Coene, H. and Ollevier, F. (1997). Ectoparasites of the whitespotted rabbitfish, Siganus sutor (Valenciennes, 1835) of the Kenyan coast: distribution within the host population and site selection on the gills. Parasitology 115, 6979.CrossRefGoogle ScholarPubMed
Heegaard, P. (1947). Contribution to the phylogeny of the arthropods. Copepoda. Spolia Zoologica Musei Hauniensis 8, 1227.Google Scholar
Ho, J.-S. (1967). A new cyclopoid copepod (Chondracanthidae) parasitic on the armored Sea Robin from the Florida Straits. Journal of Parasitology 53, 406411.CrossRefGoogle ScholarPubMed
Ho, J.-S. (1970). Revision of the genera of the Chondracanthidae, a copepod family parasitic on marine fishes. Beaufortia 229, 105218.Google Scholar
Kabata, Z. (1959). Ecology of the genus Acanthochondria Oakley (Copepoda Parasitica). Journal of the Marine Biological Association of the United Kingdom 38, 249261.CrossRefGoogle Scholar
Kabata, Z. (1979). Parasitic Copepoda of British Fishes. The Ray Society, London, UK.Google Scholar
Kabata, Z. (1982). The evolution of host-parasite systems between fishes and Copepoda. In Parasites - Their World and Ours (ed. Metrick, D. T. and Desser, S. S.), pp. 203212. Elsevier Biomedical Press, New York, UK.Google Scholar
Kabata, Z. (1992). Copepods Parasitic on Fishes. Synopses of the British Fauna (New 375 Series) No. 47. Universal Book Services/Dr. W. Backhuys, Oegstgeest, The Netherlands.Google Scholar
Llewellyn, J. (1956). The host-specificity, micro-ecology, adhesive attitudes, and comparative morphology of some trematode gill parasites. Journal of the Marine Biological Association of the United Kingdom 35, 113127.CrossRefGoogle Scholar
Lo, C. M. and Morand, S. (2001). Gill parasites of Cephalopholis argus (Teleostei: Serranidae) from Moorea (French Polynesia): site selection and coexistence. Folia Parasitologica 48, 3036.CrossRefGoogle ScholarPubMed
Marques, J. F., Teixeira, C. M. and Cabral, H. N. (2006). Differentiation of commercially important flatfish populations along the Portuguese coast: Evidence from morphology and parasitology. Fisheries Research 81, 293305.CrossRefGoogle Scholar
Østergaard, P. and Boxshall, G. A. (2004). Giant females and dwarf males: a comparative study of nuptial organs in female Chondracanthidae (Crustacea: Copepoda). Zoologischer Anzeiger 243, 6574.CrossRefGoogle Scholar
Paling, J. E. (1968). A method of estimating the relative volumes of water flowing over different gills of a freshwater fish. Journal of Experimental Biology 48, 533544.CrossRefGoogle ScholarPubMed
Ramasamy, P., Ramalingam, K., Hanna, R. E. B. and Halton, D. W. (1985). Microhabitats of gill parasites (Monogenea and Copepoda) of teleosts (Scomberoides spp.). International Journal for Parasitology 15, 385397.CrossRefGoogle Scholar
Rohde, K. (1979). A critical evaluation of intrinsic and extrinsic factors responsible for niche selection in parasites. The American Naturalist 114, 648671.CrossRefGoogle Scholar
Rohde, K. (1994). Niche selection in parasites: proximate and ultimate causes. Parasitology 109, S69S84.CrossRefGoogle Scholar
SPSS Inc. (2007). SPSS Base 17.0 User's Guide. Chicago, IL, USA.Google Scholar
Schmidt, V., Zander, S., Körting, W. and Steinhagen, D. (2003). Parasites of the flounder Platichthys flesus (L.) from the German Bight, North Sea, and their potential use in ecosystem monitoring. A. Infection characteristics of potential indicator species. Helgoland Marine Research 57, 236251.Google Scholar
Scott, A. (1901). Lepeophtheirus and Lernaea. Transactions of the Liverpool Biological Society 15, 154.Google Scholar
Scott-Holland, T. B., Bennett, S. M. and Bennett, M. B. (2006). Distribution of an asymmetrical copepod, Hatschekia plectropomi, on the gills of Plectropomus leopardus. Journal of Fish Biology 68, 222235.CrossRefGoogle Scholar
Timi, J. T., Lanfranchi, A. L. and Poulin, R. (2010). Consequences of microhabitat selection for reproductive success in the parasitic copepod Neobrachiella spinicephala (Lernaeopodidae). Parasitology 137, 16871694.CrossRefGoogle ScholarPubMed