Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T15:38:33.346Z Has data issue: false hasContentIssue false

Sir2-Related Protein 1 from Leishmania amazonensis is a glycosylated NAD+-dependent deacetylase

Published online by Cambridge University Press:  08 August 2011

M. R. FESSEL
Affiliation:
Chemistry Institute, University of Campinas UNICAMP, Campinas SP 13083-970, Brazil
C. B. LIRA
Affiliation:
Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Botucatu, SP 18618-000, Brazil
S. GIORGIO
Affiliation:
Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
C. H. I. RAMOS*
Affiliation:
Chemistry Institute, University of Campinas UNICAMP, Campinas SP 13083-970, Brazil
M. I. N. CANO*
Affiliation:
Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Botucatu, SP 18618-000, Brazil
*
*Corresponding author: Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Botucatu, SP 18618-000, Brazil. Fax: +55 14 3811 6229. E-mail: [email protected]

Summary

Sirtuin proteins form a family of NAD+-dependent protein deacetylases that are considered potential drug targets against parasites. Here, we present the first characterization of a sirtuin orthologue from Leishmania amazonensis, an aetiological agent of American tegumentary leishmaniasis that has been the subject of many studies focused in the development of therapeutic approaches. The protein has high sequence identity with other Kinetoplastid Silent information regulator 2 Related Protein 1 (Sir2RP1) and was named LaSir2RP1. The gene exists as a single copy, encoding a monomeric protein (LaSir2RP1) of approximately 41 kDa that has NAD+-dependent deacetylase activity. LaSir2RP1 was immunodetected in total protein extracts, in cytoplasmic granules, and in the secreted material of both promastigotes and lesion-derived amastigotes. Analysis of both lectin‑affinity purified promastigote and amastigote extracts revealed the presence of a major enriched protein of approximately 66 kDa that was recognized by an anti-LaSir2RP1 serum, suggesting that a parasite sirtuin could be glycosylated in vivo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avalos, J. L., Bever, K. M. and Wolberger, C. (2005). Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Molecular Cell 17, 855868.CrossRefGoogle ScholarPubMed
Barbiéri, C. L., Giorgio, S., Merjan, A. J. C. and Figueiredo, E. N. (1993). Glycosphingolipid antigens of Leishmania (Leishmania) amazonensis amastigotes identified by use of a monoclonal antibody. Infection and Immunity 61, 21312137.CrossRefGoogle ScholarPubMed
Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. and Sinclair, D. A. (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. The Journal of Biological Chemistry 277, 4509945107.CrossRefGoogle ScholarPubMed
Correa, D. H. A. and Ramos, C. H. I. (2009). The use of circular dichroism spectroscopy to study protein folding, form and function. African Journal of Biochemistry Research 3, 164173.Google Scholar
Cotrim, P. C., Paranhos, G. S., Mortara, R. A., Wanderley, J., Rassi, A., Camargo, M. A. and da Silveira, J. F. (1990). Expression in Escherichia coli of a dominant immunogen of Trypanosoma cruzi recognized by human chagasic sera. Journal of Clinical Microbiology 28, 519524.CrossRefGoogle ScholarPubMed
Cuervo, P., de Jesus, J. B., Saboia-Vahia, L., Mendonça-Lima, L., Domont, G. B. and Cupolillo, E. (2009). Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. Journal of Proteomics 73, 7992.CrossRefGoogle ScholarPubMed
Desjeux, P. (2004). Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology & Infectious Diseases 27, 305318.CrossRefGoogle ScholarPubMed
Frye, R. A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and Biophysical Research Communications 273, 793798.CrossRefGoogle ScholarPubMed
Goldstein, I. J., Hollerman, C. E. and Smith, E. E. (1965 ). Protein-carbohydrate interaction. II. Inhibition studies on the interaction of Concanavalin A with polysaccharides. Biochemistry 5, 876883.CrossRefGoogle Scholar
Hide, H., Ritleng, A. S., Brizard, J. P., Monte-Allegre, A. and Sereno, D. (2008). Leishmania infantum: tuning digitonin fractionation for comparative proteomic of the mitochondrial protein content. Parasitology Research 103, 989992.CrossRefGoogle ScholarPubMed
Ilgoutz, S. C., Mullin, K. A., Southwell, B. R. and McConville, M. J. (1999). Glycosylphosphatidylinositol biosynthetic enzymes are localized to a stable tubular subcompartment of the endoplasmic reticulum in Leishmania mexicana. EMBO J. 18, 36433654.CrossRefGoogle ScholarPubMed
Imai, S. and Guarente, L. (2010). Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends in Pharmacological Science 31, 212220.CrossRefGoogle ScholarPubMed
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S. M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R. M. R., Cronin, A., Cruz, A. K., Davies, R. M., Gaudenzi, J., Dobson, D. E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A. C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J. C., Müller-Auer, S., Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O'Neil, S., Pentony, M., Pohl, T. M., Price, C., Purnelle, B., Quail, M. A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J. C., Rutter, S., Saunders, D., Schäfer, M., Schein, J., Schwartz, D. C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S., Zimmermann, W., Smith, D. F., Blackwell, J. M., Stuart, K. D., Barrell, B. and Myler, P. J. (2005). The Genome of the Kinetoplastid Parasite, Leishmania major. Science 390, 436442.CrossRefGoogle Scholar
Kadam, R. U., Kiran, V. M. and Roy, N. (2006). Comparative protein modeling and surface analysis of Leishmania sirtuin: a potential target for antileishmanial drug discovery. Bioorganic & Medicinal Chemistry Letters 16, 60136018.CrossRefGoogle ScholarPubMed
Kaur, S., Shivange, A. V. and Roy, N. (2010). Structural analysis of trypanosomal sirtuin: an insight for selective drug design. Molecular Diversity 14, 169178.CrossRefGoogle ScholarPubMed
McConville, M. J., Mullin, K. A., Ilgoutz, S. C. and Teasdale, R. D. (2002). Secretory pathway of trypanosomatid parasites. Microbiology and Molecular Biology Reviews 66, 122154.CrossRefGoogle ScholarPubMed
Michan, S. and Sinclair, D. (2007). Sirtuins in mammals: insights into their biological function. The Biochemical Journal 404, 113.CrossRefGoogle ScholarPubMed
Monteiro, J. P. and Cano, M. I. N. (2011). SIRT1 deacetylase activity and the maintenance of protein homeostasis in response to stress: an overview. Protein and Peptide Letters 18, 167173.CrossRefGoogle ScholarPubMed
Munro, S. and Pelham, H. R. B. (1987). A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899907.CrossRefGoogle ScholarPubMed
North, B. J. and Verdin, E. (2007). Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. The Journal of Biological Chemistry 282, 1954619555.CrossRefGoogle ScholarPubMed
Nylén, S. and Gautam, S. (2010). Immunological perspectives of leishmaniasis. Journal of Global Infectious Diseases 2, 135146.CrossRefGoogle ScholarPubMed
Ramos, C. H. I. (2004). A spectroscopic-based laboratory course for protein conformational studies. Biochemistry and Molecular Biology Education 32, 3134.CrossRefGoogle Scholar
Sakaguchi, M., Tomiyoshi, R., Kuroiwa, T., Mihara, K. and Omura, T. (1992). Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge. Proceedings of the National Academy of Sciences, USA 89, 1619.CrossRefGoogle ScholarPubMed
Schwer, B. and Verdin, E. (2008). Conserved metabolic regulatory functions of sirtuins. Cell Metabolism 7, 104112.CrossRefGoogle ScholarPubMed
Sereno, D., Vanhille, L., Vergnes, B., Monte-Allegre, A. and Ouaissi, A. (2005). Experimental study of the function of the excreted/secreted Leishmania LmSir2 protein by heterologous expression in eukaryotic cell line. Kinetoplastid Biology and Disease 4, 1. doi: 10.1186/1475-9292-4-1CrossRefGoogle ScholarPubMed
Shapira, M. and Pinelli, E. (1989). Heat-shock protein 83 of Leishmania Mexicana amazonensis is an abundant cytoplasmic protein with a tandemly repeated genomic arrangement. European Journal of Biochemistry 185, 231236.CrossRefGoogle ScholarPubMed
Silva, J. L., Miles, E. W. and Weber, G. (1986). Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase. Biochemistry 25, 57805786.CrossRefGoogle ScholarPubMed
Silverman, J. M., Chan, S. K., Robinson, D. P., Dwyer, D. M., Nandan, D., Foster, L. J. and Reiner, N. (2008). Proteomic analysis of the secretome of Leishmania donovani. Genome Biology 9, R35.1R35.21.CrossRefGoogle ScholarPubMed
Silverman, J. M., Clos, J., de Oliveira, C. C., Shirvani, O., Fang, Y., Wang, C., Foster, L. J. and Reiner, N. E. (2010). An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. Journal of Cell Science 123, 842852.CrossRefGoogle ScholarPubMed
Siqueira Neto, J. L., Lira, C. B. B., Giardini, M. A., Khater, L., Perez, A. M., Peroni, L. A., dos Reis, J. R. R., Freitas-Junior, L. H., Ramos, C. H. I. and Cano, M. I. N. (2007). Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA. Biochemical and Biophysical Research Communications 358, 417423.CrossRefGoogle Scholar
Tanner, K. G., Landry, J., Sternglanz, R. and Denu, J. M. (2000). Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proceedings of the National Academy of Sciences, USA 97, 1417814182.CrossRefGoogle ScholarPubMed
Tavares, J., Ouaissi, A., Santarém, N., Sereno, D., Vergnes, B., Sampaio, P. and Cordeiro-da-Silva, A. (2008). The Leishmania infantum cytosolic Sir2-related protein 1 (LiSir2RP1) is an NAD+-dependent deacetylase and ADP-ribosyltransferase. The Biochemical Journal 415, 377386.CrossRefGoogle ScholarPubMed
Vergnes, B., Sereno, D., Madjidian-Sereno, N., Lemesre, J. and Ouaissi, A. (2002). Cytoplasmic SIR2 homologue overexpression promotes survival of Leishmania parasites by preventing programmed cell death. Gene 296, 139150.CrossRefGoogle ScholarPubMed
Vergnes, B., Vanhille, L., Ouaissi, A. and Sereno, D. (2005). Stage-specific antileishmanial activity of an inhibitor of SIR2 histone deacetylase. Acta Tropica 94, 107115.CrossRefGoogle ScholarPubMed
Wilson, J. M., Le, V. Q., Zimmerman, C., Marmorstein, R. and Pillus, L. (2006). Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Reports 7, 12471251.CrossRefGoogle ScholarPubMed
Yahiaoui, B., Taibi, A. and Ouaissi, A. (1996). A Leishmania protein with extensive homology to silent information regulator 2 of Saccharomyces cerevisiae. Gene 169, 115118.CrossRefGoogle ScholarPubMed
Yang, Y., Fu, W., Chen, J., Olashaw, N., Zhang, X., Nicosia, S. V., Bhalla, K. and Bai, W. (2007). SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nature Cell Biology 9, 12531262.CrossRefGoogle ScholarPubMed
Zaverucha do Valle, T., Gaspar, E. B., Souza-Lemos, C., Souza, C. S. F., Zamora Márquez, F. B., Beatas-da-Cruz, W., d'Escofier, L. N., Côrte-Real, S., Calabrese, K. S. and Gonçalves da Costa, S. C. (2007). Experimental Leishmania (L.) amazonensis Leishmaniasis: characterization and immunogenicity of subcellular fractions. Immunological Investigations 36, 473492.CrossRefGoogle Scholar
Zemzoumi, K., Sereno, D., François, C., Guilvard, E., Lemesre, J. and Ouaissi, A. (1998). Leishmania major: cell type dependent distribution of a 43 kDa antigen related to silent information regulatory-2 protein family. Biology of the Cell 90, 239245.CrossRefGoogle ScholarPubMed