Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T20:42:59.399Z Has data issue: false hasContentIssue false

Serum factors in Raja radiata toxic to Acanthobothrium quadripartitum (Cesoda: Tetraphyllidea), a parasite specific to R. naevus

Published online by Cambridge University Press:  06 April 2009

A. H. McVicar
Affiliation:
Department of Natural History and N.E.R.C. Fisheries Biochemical Research Unit, University of Aberdeen
Thelma C. Fletcher
Affiliation:
Department of Natural History and N.E.R.C. Fisheries Biochemical Research Unit, University of Aberdeen

Extract

Acanthobothrium quadripartitum, a tapeworm parasitic in the intestine of Raja naevus, is not found in the closely related R. radiata. The tapeworm survives in vitro for over 24 h in fresh serum from the natural host, but fresh serum from R. radiata is extremely toxic; about 80% are killed within 2 h with the formation of a characteristic external precipitate. The toxicity of fresh R. radiata serum was abolished by procedures known to inactivate complement and restored by the addition of fresh serum from the natural host R. naevus. This observation suggests that both species of ray possess a similar complement system in fresh serum but only R. radiata contains a natural serum antibody toxic to A. quadripartitum. No toxicity could be demonstrated in R. radiata mucous in vitro, probably due to the serum factors being present in low concentrations.

The results are discussed in relation to the observed inability of A. quadripartitum to survive in the intestine of R. radiata.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clem, L. W. & Sigel, M. M. (1963). Comparative immunochemical and immunological reactions in marine fishes with soluble, viral, and bacteria antigens. Federation Proceedings of American Societies for Experimental Biology 22, 1138–44.Google Scholar
Coleman, R. M. & deSa, L. M. (1964). Host response to implanted adult Hymenolepis nana. The Journal of Parasitology 50, Supplement 17 (Abstract).Google Scholar
Fletcher, T. C. & Grant, P. T. (1969). Immunoglobulins in the serum and mucus of the plaice, Pleuronectes platessa. Biochemical Journal. 115, 65P.Google Scholar
Good, R. A., Finstad, J., Pollara, B. & Gabrielsen, A. E. (1966). Morphologic studies on the evolution of the lymphoid tissues among the lower vertebrates. In Phylogeny of Immunity, pp. 149168. Ed. Smith, R. T., Miescher, P. A. & Good, R. A.. Gainesville: University of Florida Press.Google Scholar
Heyneman, D. & Welsh, J. F. (1959). Action of homologous antiserum in vitro against life cycle stages of Hymenolepis nana, the Dwarf Mouse Tapeworm. Experimental Parasitology 8, 119–28.Google Scholar
Kabat, E. A. & Mayer, M. M. (1961). Experimental Immunochemistry (2nd ed.), 905 pp. Springfield, Illinois: C. C. Thomas.Google Scholar
Legler, D. W. & Evans, E. E. (1967). Comparative immunology: hemolytic complement in elasmobranchs. Proceedings of the Society for Experimental Biology and Medicine 124, 30–4.Google Scholar
Legler, D. W., Evans, E. E. & Dupree, H. K. (1967). Comparative immunology: serum complement of freshwater fishes. Transactions of the American Fisheries Society 9, 237–42.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.Google Scholar
Mueller, J. F. (1961). The laboratory propagation of Spirometra mansoides as an experimental tool. V. Behaviour of the sparganum in and out of the mouse host, and formation of immune precipitates. The Journal of Parasitology 47, 879–81.CrossRefGoogle Scholar
Nigrelli, R. F. (1935). On the effect of fish mucus on Epibdella melleni, a monogenetic trematode of marine fishes. The Journal of Parasitology 21, Supplement 438 (Abstract).Google Scholar
O'Rourke, F. J. (1961). Presence of blood antigens in fish mucus and its possible parasitological significance. Nature, London 189, 943.Google Scholar
Pierce, A. E. (1959). Specific antibodies at mucous surfaces. Veterinary Reviews and Annotations 5, 1736.Google Scholar
Read, C. P., Simmons, J. E., Campbell, J. W. & Rothman, A. H. (1960). Permeation and membrane transport in parasitism: studies on a tapeworm-elasmobranch symbiosis. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass. 119, 120–33.Google Scholar
Rees, G. (1967). Pathogenesis of adult cestodes. Helminthological Abstracts 36, 123.Google Scholar
Ridgway, G. J., Hodgins, H. O. & Klontz, G. W. (1966). The immune response in teleosts. In Phylogeny of Immunity pp. 199207. Ed. Smith, R. T., Miescher, P. A. and Good, R. A.. Gainsville: University of Florida Press.Google Scholar
Smyth, J. D. (1969). Parasites as biological models. Parasitology 59, 7391.Google Scholar
Terry, R. J. (1957). Antibody against Trypanosoma vivax present in normal cotton rat serum. Experimental Parasitology 6, 404–11.Google Scholar
Tomasi, T. B. & Bienenstock, J. (1968). Secretory immunoglobulins. Advances in Immunology 9, 196.Google Scholar
Weinmann, C. J. (1966). Immunity mechanisms in cestode infections. In Biology of Parasites, pp. 301320. Ed. Soulsby, E. J. L.. New York and London: Academic Press.Google Scholar
Williams, H. H. (1968). Acanthobothrium quadripartitum sp.nov. (Cestoda: Tetraphyllidea) from Raja naevus in the North Sea and English Channel. Parasitology 58, 105110.CrossRefGoogle ScholarPubMed
Williams, H. H. (1969). The genus Acanthobothrium Beneden 1849 (Cestoda: Tetraphyllidea). Nytt Magasin for Zoologi 17, 156.Google Scholar