Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T21:28:21.427Z Has data issue: false hasContentIssue false

Seroprevalence and GIS-supported risk factor analysis of Fasciola hepatica infections in dairy herds in Germany

Published online by Cambridge University Press:  07 June 2013

BIRTE KUERPICK
Affiliation:
Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
FRANZ J. CONRATHS
Affiliation:
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Seestraße 55, 16868 Wusterhausen, Germany
CHRISTOPH STAUBACH
Affiliation:
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Seestraße 55, 16868 Wusterhausen, Germany
ANDREAS FRÖHLICH
Affiliation:
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Seestraße 55, 16868 Wusterhausen, Germany
THOMAS SCHNIEDER
Affiliation:
Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
CHRISTINA STRUBE*
Affiliation:
Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
*
*Corresponding author. Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany. E-mail: [email protected]

Summary

A total of 20 749 bulk tank milk (BTM) samples was collected in November 2008 from all over Germany, corresponding to 20·9% of all German dairy herds. The BTM samples were analysed for antibodies against Fasciola hepatica using the excretory–secretory (ES) ELISA. A geospatial map was drawn to show herd prevalences per postal code area. Various spatial risk factors were tested for potential statistical associations with the ELISA results in logistic regression supported by a geographical information system (GIS). The mean seroprevalence was 23·6% and prevalences in different German federal states varied between 2·6% and 38·4%. GIS analysis revealed statistically significant positive associations between the proportion of grassed area and water bodies per postal code area and positive BTM ELISA results. This can be explained by the biology of the intermediate host, the amphibious snail Galba (Lymnea) truncatula and the pasture-borne nature of fasciolosis. The full logistic regression model had a Pseudo-R2 of 22%, while the final model obtained by controlled stepwise model building revealed a Pseudo-R2 of 14%, indicating that additional, unrecorded factors and random effects contributed substantially to the occurrence of positive ELISA results. Considering the high seroprevalences in some areas and the economic impact of fasciolosis, farmers and veterinarians should be strongly advised to implement effective liver fluke control programmes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bennema, S., Vercruysse, J., Claerebout, E., Schnieder, T., Strube, C., Ducheyne, E., Hendrickx, G. and Charlier, J. (2009). The use of bulk-tank milk ELISAs to assess the spatial distribution of Fasciola hepatica, Ostertagia ostertagi and Dictyocaulus viviparus in dairy cattle in Flanders (Belgium). Veterinary Parasitology 165, 5157.CrossRefGoogle ScholarPubMed
Bennema, S. C., Ducheyne, E., Vercruysse, J., Claerebout, E., Hendrickx, G. and Charlier, J. (2011). Relative importance of management, meteorological and environmental factors in the spatial distribution of Fasciola hepatica in dairy cattle in a temperate climate zone. International Journal for Parasitology 41, 225233.CrossRefGoogle Scholar
Bolln, M., Zahner, H. and Bauer, C. (2007). Estimating the prevalence of Fasciola hepatica infection in dairy cow farms in Schleswig-Holstein, Germany. In 21st International Conference of the World Association for the Advancement of Veterinary Parasitology: From EPG to Genes. 19–23 August 2007, Gent, Belgium, p. 425.Google Scholar
Boray, J. C. (1985). Flukes of domestic animals. In Parasites, Pests and Predators (ed. Gaafar, S. M., Howard, R. E. and Marsch, R. E. H.), pp. 179218. Elsevier, Amsterdam, the Netherlands.Google Scholar
Cawdery, M. J., Strickland, K. L., Conway, A. and Crowe, P. J. (1977). Production effects of liver fluke in cattle. I. The effects of infection on liveweight gain, feed intake and food conversion efficiency in beef cattle. British Veterinary Journal 133, 145159.CrossRefGoogle Scholar
Charlier, J., Duchateau, L., Claerebout, E., Williams, D. and Vercruysse, J. (2007). Associations between anti-Fasciola hepatica antibody levels in bulk-tank milk samples and production parameters in dairy herds. Preventive Veterinary Medicine 78, 5766.CrossRefGoogle ScholarPubMed
Charlier, J., Bennema, S. C., Caron, Y., Counotte, M., Ducheyne, E., Hendrickx, G. and Vercruysse, J. (2011). Towards assessing fine-scale indicators for the spatial transmission risk of Fasciola hepatica in cattle. Geospatial Health 5, 239245.CrossRefGoogle ScholarPubMed
Charlier, J., Hostens, M., Jacobs, J., Van Ranst, B., Duchateau, L. and Vercruysse, J. (2012). Integrating fasciolosis in the dry cow management: the effect of Closantel treatment on milk production. PLoS ONE 7, e43216.CrossRefGoogle ScholarPubMed
Cringoli, G., Rinaldi, L., Veneziano, V., Capelli, G. and Malone, J. B. (2002). A cross-sectional coprological survey of liver flukes in cattle and sheep from an area of the southern Italian Apennines. Veterinary Parasitology 108, 137143.CrossRefGoogle ScholarPubMed
Durr, P. A., Tait, N. and Lawson, A. B. (2005). Bayesian hierarchical modelling to enhance the epidemiological value of abattoir surveys for bovine fasciolosis. Preventive Veterinary Medicine 71, 157172.CrossRefGoogle ScholarPubMed
Dutra, L. H., Molento, M. B., Naumann, C. R., Biondo, A. W., Fortes, F. S., Savio, D. and Malone, J. B. (2010). Mapping risk of bovine fasciolosis in the south of Brazil using Geographic Information Systems. Veterinary Parasitology 169, 7681.CrossRefGoogle ScholarPubMed
Fuentes, M. V. (2006). Remote sensing and climate data as a key for understanding fasciolosis transmission in the Andes: review and update of an ongoing interdisciplinary project. Geospatial Health 1, 5970.CrossRefGoogle ScholarPubMed
Kantzoura, V., Kouam, M. K., Demiris, N., Feidas, H. and Theodoropoulos, G. (2011). Risk factors and geospatial modelling for the presence of Fasciola hepatica infection in sheep and goat farms in the Greek temperate Mediterranean environment. Parasitology 138, 926938.CrossRefGoogle ScholarPubMed
Kaplan, R. M. (2001). Fasciola hepatica: a review of the economic impact in cattle and considerations for control. Veterinary Therapeutics 2, 4050.Google ScholarPubMed
Knubben-Schweizer, G., Deplazes, P., Torgerson, P. R., Rapsch, C., Meli, M. L. and Braun, U. (2010 a). Bovine fasciolosis in Switzerland: relevance and control. Schweizer Archiv für Tierheilkunde 152, 223229.CrossRefGoogle ScholarPubMed
Knubben-Schweizer, G., Ruegg, S., Torgerson, P. R., Rapsch, C., Grimm, F., Hassig, M., Deplazes, P. and Braun, U. (2010 b). Control of bovine fasciolosis in dairy cattle in Switzerland with emphasis on pasture management. Veterinary Journal 186, 188191.CrossRefGoogle ScholarPubMed
Koch, S. (2005). Untersuchungen zur Verbreitung von Fasciola hepatica im bayerischen Milchviehbestand. Thesis. Ludwig-Maximilians-Universität, Munich, Germany.Google Scholar
Kraneburg, W. (1992). Koprologische Untersuchung von Rinderbeständen auf Leberegelbefall in Feuchtgebieten in Nordrhein-Westfalen. In Tagung der Fachgruppe ‘Parasitologie und parasitäre Krankheiten’, pp. 3139. Husum, Germany.Google Scholar
Kuerpick, B., Fiedor, C., von Samson-Himmelstjerna, G., Schnieder, T. and Strube, C. (2012 a) Bulk milk-estimated seroprevalence of Fasciola hepatica in dairy herds and collecting of risk factor data in East Frisia, Northern Germany. Berliner und Münchener Tierärztliche Wochenschrift 125, 345350.Google ScholarPubMed
Kuerpick, B., Schnieder, T. and Strube, C. (2012 b). Seasonal pattern of Fasciola hepatica antibodies in dairy herds in Northern Germany. Parasitology Research 111, 10851092.CrossRefGoogle ScholarPubMed
Longley, P. A., Goodchild, M. F., Maguire, D. J. and Rhind, D. W. (2001). Geographic Information Systems and Science, p. 454. John Wiley & Sons, Chicester, UK.Google Scholar
Malone, J. B., Gommes, R., Hansen, J., Yilma, J. M., Slingenberg, J., Snijders, F., Nachtergaele, F. and Ataman, E. (1998). A geographic information system on the potential distribution and abundance of Fasciola hepatica and F. gigantica in east Africa based on Food and Agriculture Organization databases. Veterinary Parasitology 78, 87101.CrossRefGoogle Scholar
McCann, C. M., Baylis, M. and Williams, D. J. (2010 a). Seroprevalence and spatial distribution of Fasciola hepatica-infected dairy herds in England and Wales. Veterinary Record 166, 612617.CrossRefGoogle ScholarPubMed
McCann, C. M., Baylis, M. and Williams, D. J. (2010 b). The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. International Journal for Parasitology 40, 10211028.CrossRefGoogle ScholarPubMed
Mitchell, G. (2002). Update on fasciolosis in cattle and sheep. In Practice 24, 378385.CrossRefGoogle Scholar
Pearce, J. and Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133, 225245.CrossRefGoogle Scholar
Randell, W. F. and Bradley, R. E. (1980). Effects of hexachlorethane on the milk yields of dairy cows in north Florida infected with Fasciola hepatica. American Journal of Veterinary Research 41, 262263.Google ScholarPubMed
Rapsch, C., Schweizer, G., Grimm, F., Kohler, L., Bauer, C., Deplazes, P., Braun, U. and Torgerson, P. R. (2006). Estimating the true prevalence of Fasciola hepatica in cattle slaughtered in Switzerland in the absence of an absolute diagnostic test. International Journal for Parasitology 36, 11531158.CrossRefGoogle ScholarPubMed
Ribbeck, R. and Witzel, G. (1979). Ökonomische Verluste infolge Fasziolose bei Rind und Schaf. Monatshefte für Veterinärmedizin 34, 5661.Google Scholar
Ross, J. G. (1970). The economics of Fasciola hepatica infections in cattle. British Veterinary Journal 126, xiiixv.Google ScholarPubMed
Runge, C. (1992). Leberegelbefall bei Schlachtrindern in Nordfriesland. In Tagung der Fachgruppe ‘Parasitologie und parasitäre Krankheiten’, pp. 4748. Husum, Germany.Google Scholar
Schweizer, G., Braun, U., Deplazes, P. and Torgerson, P. R. (2005 a). Estimating the financial losses due to bovine fasciolosis in Switzerland. Veterinary Record 157, 188193.CrossRefGoogle ScholarPubMed
Schweizer, G., Hassig, M. and Braun, U. (2005 b). The awareness of farmers with regard to bovine fascioliasis. Schweizer Archiv für Tierheilkunde 147, 253257.CrossRefGoogle ScholarPubMed
Schweizer, G., Meli, M. L., Torgerson, P. R., Lutz, H., Deplazes, P. and Braun, U. (2007). Prevalence of Fasciola hepatica in the intermediate host Lymnaea truncatula detected by real time TaqMan PCR in populations from 70 Swiss farms with cattle husbandry. Veterinary Parasitology 150, 164169.CrossRefGoogle ScholarPubMed
Tum, S., Puotinen, M. L. and Copeman, D. B. (2004). A geographic information systems model for mapping risk of fasciolosis in cattle and buffaloes in Cambodia. Veterinary Parasitology 122, 141149.CrossRefGoogle ScholarPubMed
Yilma, J. M. and Malone, J. B. (1998). A geographic information system forecast model for strategic control of fasciolosis in Ethiopia. Veterinary Parasitology 78, 103127.CrossRefGoogle ScholarPubMed
Supplementary material: Image

KUERPICK et al. supplementary material

Supplementary figure

Download KUERPICK et al. supplementary material(Image)
Image 3 MB