Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T04:42:37.051Z Has data issue: false hasContentIssue false

Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons

Published online by Cambridge University Press:  15 February 2010

F. DEL PICCOLO*
Affiliation:
Dipartimento di Biologia e Protezione delle Piante, Università degli Studi di Udine Via delle Scienze, 208 Udine, Italy
F. NAZZI
Affiliation:
Dipartimento di Biologia e Protezione delle Piante, Università degli Studi di Udine Via delle Scienze, 208 Udine, Italy
G. DELLA VEDOVA
Affiliation:
Dipartimento di Biologia e Protezione delle Piante, Università degli Studi di Udine Via delle Scienze, 208 Udine, Italy
N. MILANI
Affiliation:
Dipartimento di Biologia e Protezione delle Piante, Università degli Studi di Udine Via delle Scienze, 208 Udine, Italy
*
*Corresponding author: Tel: +39 0432 558515. Fax: +39 0432 558501. E-mail: [email protected]

Summary

The parasitic mite, Varroa destructor, is the most important threat for apiculture in most bee-keeping areas of the world. The mite is carried to the bee brood cell, where it reproduces, by a nurse bee; therefore the selection of the bee stage by the parasite could influence its reproductive success. This study investigates the role of the cuticular hydrocarbons of the European honeybee (Apis mellifera) in host-selection by the mite. Preliminary laboratory bioassays confirmed the preference of the varroa mite for nurse bees over pollen foragers. GC-MS analysis of nurse and pollen bees revealed differences in the cuticular hydrocarbons of the two stages; in particular, it appeared that pollen bees have more (Z)-8-heptadecene than nurse bees. Laboratory experiments showed that treatment of nurse bees with 100 ng of the pure compound makes them repellent to the varroa mite. These results suggest that the mite can exploit the differences in the cuticular composition of its host for a refined selection that allows it to reach a brood cell and start reproduction. The biological activity of the alkene encourages further investigations for the development of novel control techniques based on this compound.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aumeier, P., Rosenkranz, P. and Francke, W. (2002). Cuticular volatiles, attractivity of worker larvae and invasion of brood cells by Varroa mites. A comparison of Africanized and European honey bees. Chemoecology 12, 6575.CrossRefGoogle Scholar
Beetsma, J., Boot, W. J. and Calis, J. (1999). Invasion behaviour of Varroa jacobsoni Oud: from bees into brood cells. Apidologie 30, 125140.CrossRefGoogle Scholar
Boot, W. J., Beetsma, J. and Calis, J. N. M. (1994). Behavior of Varroa mites invading honey bee brood cells. Experimental & Applied Acarology 18, 371379.CrossRefGoogle Scholar
Boot,W. J. ,W. J., Driessen, R. G., Calis, J. N. M. and Beetsma, J. (1995). Further observations on the correlation between attractiveness of honey bee brood cells to Varroa jacobsoni and the distance from larva to cell rim. Entomologia Experimentalis et Applicata 76, 223232.CrossRefGoogle Scholar
Calis, J. N. M., Fries, I. and Ryrie, S. C. (1999). Population modelling of Varroa jacobsoni Oud., Apidologie 30, 111124.CrossRefGoogle Scholar
Chiesa, F., Milani, N. and D'Agaro, M. (1989). Observations of the reproductive behaviour of Varroa jacobsoni Oud.: techniques and preliminary results, present status of varroatosis in Europe and progress in the varroa mite control. In Proceedings Meeting EC-Experts Group, Udine 1988) (ed. Cavalloro, R.), pp. 213222. C.E.C., Luxembourg.Google Scholar
Comparini, A. and Biasiolo, A. (1991). Genetic discrimination of Italian bee, Apis mellifera ligustica versus Carniolan bee, Apis mellifera carnica by allozyme variability analysis. Biochemical Systematic and Ecology 19, 189194.CrossRefGoogle Scholar
Dillier, F. X., Fluri, P. and Imdorf, A. (2006). Review of the orientation behaviour in the bee parasitic mite Varroa destructor: sensory equipment and cell invasion behaviour. Revue Suisse de Zoologie 113, 857877.CrossRefGoogle Scholar
Donzé, G., Schnyder-Candrian, S., Bogdanov, S., Diehl, P. A., Guerin, P. M., Kilchenman, V. and Monachon, F. (1998). Aliphatic alcohols and aldehydes of the honey bee cocoon induce arrestment behavior in Varroa jacobsoni (Acari: Mesostigmata), an ectoparasite of Apis mellifera. Archives of Insect Biochemistry and Physiology 37, 129145.3.0.CO;2-P>CrossRefGoogle Scholar
Gibbs, A. G. (1998). Water-proofing properties of cuticular lipids. American Zoologist 38, 471482.CrossRefGoogle Scholar
Goetz, B. and Koeniger, N. (1993). The distance between the larva and cell opening triggers broodcell invasion by Varroa jacobsoni. Apidologie 24, 6772.CrossRefGoogle Scholar
Hadley, N. F. and Schultz, T. D. (1987). Water loss in three species of tiger beetles (Cicindela): correlations with epicuticular hydrocarbons. Journal of Insect Physiology 33, 677682.CrossRefGoogle Scholar
Hänel, H. and Koeniger, N. (1986). Possible regulation of the reproduction of the honey bee mite Varroa jacobsoni (Mesostigmata: Acari) by a host's hormone: juvenile hormone III. Journal of Insect Physiology 32, 791798.CrossRefGoogle Scholar
Hoppe, H. and Ritter, W. (1988). The influence of Nasonov pheromone on the recognition of house bees and foragers by Varroa jacobsoni. Apidologie 19, 165172.CrossRefGoogle Scholar
Klein, A., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C. and Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274, 303313. doi: 10.198/rspb.2006.3721CrossRefGoogle ScholarPubMed
Kralj, J. and Fuchs, S. (2006). Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 5, 577587.CrossRefGoogle Scholar
Kraus, B. (1993). Preference of Varroa jacobsoni for honey bees (Apis mellifera L.) of different ages. Journal of Apicultural Research 32, 5764.CrossRefGoogle Scholar
Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman and Hall, London, UK.Google Scholar
Martin, C., Salvy, M., Provost, E., Bagnères, A., Roux, M., Crauser, D., Clement, J. and Le Conte, Y. (2001). Variations in chemical mimicry by the ectoparasitic mite Varroa jacobsoni according to the developmental stage of the host honey-bee Apis mellifera. Insect Biochemistry and Molecular Biology 31, 365379.CrossRefGoogle Scholar
Milani, N. (2002). Chemical communication in the honeybee-varroa relationship. Proceedings of the Conference Bees Without Frontiers: Sixth European Bee Conference, Cardiff, UK, 1–5 July 2002, pp. 7475.Google Scholar
Milani, N., Della Vedova, G. and Nazzi, F. (2004). (Z)-8-Heptadecene reduces the reproduction of Varroa destructor in brood cells. Apidologie 35, 265273.CrossRefGoogle Scholar
Nation, J. L., Sanford, M. T. and Milne, K. (1992). Cuticular hydrocarbons from Varroa jacobsoni. Experimental & Applied Acarology 16, 331344.CrossRefGoogle Scholar
Nazzi, F. (1992). Morphometric analysis of honey bees from an area of racial hybridization in northeastern Italy. Apidologie 23, 8996.CrossRefGoogle Scholar
Nazzi, F., Milani, N., Della Vedova, G. and Nimis, M. (2001). Semiochemicals from larval food affect the locomotory behaviour of Varroa destructor. Apidologie 32, 149155.CrossRefGoogle Scholar
Nazzi, F., Milani, N. and Della Vedova, G. (2002). (Z)-8-heptadecene from infested cells reduces the reproduction of Varroa destructor under laboratory conditions. Journal of Chemical Ecology 28, 21812190. doi: 10.1023/A:1021041130593.CrossRefGoogle ScholarPubMed
Nazzi, F., Milani, N. and Della Vedova, G. (2004). A semiochemical from larval food influences the entrance of Varroa destructor into brood cells. Apidologie 35, 403410.CrossRefGoogle Scholar
Rickli, M., Diehl, P. A. and Guerin, P. M. (1994). Cuticle alkanes of honeybee larvae mediate arrestment of bee parasite Varroa jacobsoni. Journal of Chemical Ecology 20, 24372453.CrossRefGoogle Scholar
Salvy, M., Martin, C., Bagnères, A. G., Provost, É., Roux, M., Le Conte, Y. and Clément, J. L. (2001). Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells. Parasitology 122, 145159.CrossRefGoogle ScholarPubMed
Sammataro, D., Untalan, P., Guerrero, F. and Finley, J. (2005). The resistance of varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. International Journal of Acarology 31, 6774.CrossRefGoogle Scholar
Schmitt, T., Herzner, G., Weckerle, B., Schreier, P. and Strohm, E. (2007). Volatiles of foraging honeybees Apis mellifera (Hymenoptera: Apidae) and their potential role as semiochemicals. Apidologie 38, 164170.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1995). Biometry: The Principles and Practice of Statistics in Biological Research. Freeman and Co., New York, UK.Google Scholar