Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:56:18.007Z Has data issue: false hasContentIssue false

Seasonality of metazoan ectoparasites in marine European flounder Platichthys flesus (Teleostei: Pleuronectidae)

Published online by Cambridge University Press:  27 May 2009

F. I. CAVALEIRO
Affiliation:
Universidade do Porto, Faculdade de Ciências, Departamento de Zoologia-Antropologia, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal CIMAR Laboratório Associado/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
M. J. SANTOS*
Affiliation:
Universidade do Porto, Faculdade de Ciências, Departamento de Zoologia-Antropologia, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal CIMAR Laboratório Associado/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
*
*Corresponding author: Universidade do Porto, Faculdade de Ciências, Departamento de Zoologia-Antropologia, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal. Tel: +351 220 402 805. Fax: +351 220 402 709. E-mail: [email protected]

Summary

Seasonal occurrence of metazoan ectoparasites is described for the first time in marine European flounder, Platichthys flesus (L.). The parasitofauna, in this study monitored during 1 year, was found to be similar to that previously recorded for flounder. Moreover, specimens of Caligus sp. Müller, 1785 and Lepeophtheirus pectoralis (Copepoda: Caligidae), Acanthochondria cornuta (Copepoda: Chondracanthidae), Holobomolochus confusus (Copepoda: Bomolochidae) and Nerocila orbignyi (Isopoda: Cymothoidae), and also, a praniza larva (Isopoda: Gnathiidae), were isolated. From these, L. pectoralis and A. cornuta were the dominant parasites in all samples of flounder, while Caligus sp., H. confusus, N. orbignyi and the gnathiid praniza seemed to infect the flounder only occasionally. As far as the seasonality of infections is concerned, it differed considerably from that described for estuarine environments. Indeed, both prevalence and abundance of L. pectoralis and A. cornuta reached significant peaks in the summer, whereas the literature identifies the autumn as the season of maximum infection on estuarine flounder. Thus, the former period seems more favourable for the occurrence of epizooties of L. pectoralis and A. cornuta in flounder culturing systems running on seawater and operated in the studied or similar environments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M. and Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters 9, 467484.CrossRefGoogle ScholarPubMed
Bandilla, M., Hakalahti, T., Hudson, P. J. and Valtonen, E. T. (2005). Aggregation of Argulus coregoni (Crustacea: Branchiura) on rainbow trout (Oncorhynchus mykiss): a consequence of host susceptibility or exposure? Parasitology 130, 169176.CrossRefGoogle ScholarPubMed
Boxshall, G. A. (1974 a). The developmental stages of Lepeophtheirus pectoralis (Müller, 1776) (Copepoda: Caligidae). Journal of Natural History 8, 681700.Google Scholar
Boxshall, G. A. (1974 b). The population dynamics of Lepeophtheirus pectoralis (Müller): seasonal variation in abundance and age structure. Parasitology 69, 361371.Google Scholar
Boxshall, G. A. (1976). The host specificity of Lepeophtheirus pectoralis (Müller, 1776) (Copepoda: Caligidae). Journal of Fish Biology 8, 255264.CrossRefGoogle Scholar
Boxshall, G. A. (1977). The histopathology of infection by Lepeophtheirus pectoralis (Müller) (Copepoda: Caligidae). Journal of Fish Biology 10, 411415.CrossRefGoogle Scholar
Bruce, N. L. (1987). Australian species of Nerocila Leach, 1818, and Creniola n. gen. (Isopoda: Cymothoidae), crustacean parasites of marine fishes. Records of the Australian Museum 39, 355412.Google Scholar
Bush, A. O., Aho, J. M. and Kennedy, C. R. (1990). Ecological versus phylogenetic determinants of helminth parasite community richness. Evolutionary Ecology 4, 120.CrossRefGoogle Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83, 575583.Google Scholar
Cavaleiro, F. I. and Santos, M. J. (2007). Survey of the metazoan ectoparasites of the European flounder Platichthys flesus (Linnaeus, 1758) along the north-central Portuguese coast. The Journal of Parasitology 93, 12181222.CrossRefGoogle ScholarPubMed
Chibani, M. and Rokicki, J. (2004). Seasonal occurrence of parasites of flounder Platichthys flesus (L.) from the Gulf of Gdańsk. Oceanological and Hydrobiological Studies 33, 1730.Google Scholar
Costello, M. J. (2006). Ecology of sea lice parasitic on farmed and wild fish. Trends in Parasitology 22, 475483.CrossRefGoogle ScholarPubMed
European Environmental Agency (2008). Biogeographical Regions in Europe: The North-East Atlantic Ocean – Huge, Deep and Heavily Exploited. Retrieved November 1, 2008, from http://www.eea.europa.eu/publications/report_2002_0524_154909/page121.html/#1Google Scholar
European Science Foundation (2007). Impacts of Climate Change on the European Marine and Coastal Environment – Ecosystems Approach. Retrieved November 16, 2008, from http://www.sesame-ip.eu/doc/MB_Climate_Change_VLIZ_05031.pdfGoogle Scholar
Gunter, G. (1961). Some relations of estuarine organisms to salinity. Limnology and Oceanography 6, 182190.CrossRefGoogle Scholar
Hakalahti, T. and Valtonen, E. T. (2003). Population structure and recruitment of the ectoparasite Argulus coregoni Thorell (Crustacea: Branchiura) on a fish farm. Parasitology 127, 7985.CrossRefGoogle ScholarPubMed
Heegaard, P. (1947). Contribution to the phylogeny of the arthropods. Copepoda. Spolia Zoologica Musei Hauniensis 8, 1236.Google Scholar
Hemmingsen, W., Lile, N. and Halvorsen, O. (1995). Search for seasonality in occurrence of parasites of cod, Gadus morhua L. in a fjord at 70°N. Polar Biology 15, 517522.Google Scholar
Hogans, W. E. and Trudeau, D. J. (1989). Preliminary studies on the biology of sea lice, Caligus elongatus, Caligus curtus and Lepeophtheirus salmonis (Copepoda: Caligoida) parasitic on cage-cultured salmonids in the lower Bay of Fundy. Canadian Technical Report of Fisheries and Aquatic Sciences No. 1715, 14p.Google Scholar
Humes, A. G. and Gooding, R. U. (1964). A method for studying the external anatomy of copepods. Crustaceana 6, 238240.CrossRefGoogle Scholar
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22, 415427.Google Scholar
Instituto de Metereologia – IP Portugal (2009). Acompanhamento do Clima: Mapas e Gráficos. Retrieved January 20, 2009, from http://www.meteo.pt/pt/oclima/acompanhamento/index.jsp?selTipo=m&selVar=su&selAna=to&selAno=2005Google Scholar
Kabata, Z. (1992). Copepods Parasitic on Fishes. Synopses of the British fauna (New Series), No. 47. Universal Book Services/Dr W. Backhuys, Oegstgeest, The Netherlands.Google Scholar
Kabata, Z. (1981). Copepoda (Crustacea) parasitic on fishes: problems and perspectives. Advances in Parasitology 19, 171.Google Scholar
Kabata, Z. (1979). Parasitic Copepoda of British Fishes. The Ray Society, London, UK.Google Scholar
Knudsen, K. K. and Sundnes, G. (1998). Effects of salinity on infection with Lernaeocera branchialis (L.) (Copepoda: Pennellidae). The Journal of Parasitology 84, 700704.Google Scholar
Leppäkoski, E., Gollasch, S., Gruszka, P., Ojaveer, H., Olenin, S. and Panov, V. (2002). The Baltic – a sea of invaders. Canadian Journal of Fisheries and Aquatic Sciences 59, 11751188.Google Scholar
Lester, R. J. G. (2005). Isopoda (isopods). In Marine Parasitology (ed. Rohde, K.), pp. 138144. CABI Publishing, Wallingford, Oxon, UK.Google Scholar
Mann, H. (1970). Copepoda and Isopoda as parasites of marine fishes. American Fisheries Society Special Publication 5, 177189.Google Scholar
Marques, J. F., Santos, M. J., Costa, J. L., Costa, M. J. and Cabral, H. N. (2005). Metazoan parasites as biological indicators of population structure of Halobatrachus didactylus on the Portuguese coast. Journal of Applied Ichthyology 21, 220224.CrossRefGoogle Scholar
Möller, H. (1978). The effects of salinity and temperature on the development and survival of fish parasites. Journal of Fish Biology 12, 311323.CrossRefGoogle Scholar
Naylor, E. (1972). British Marine Isopods. Synopses of the British Fauna (New Series), No. 3. Academic Press, London and New York, USA.Google Scholar
NASA Jet Propulsion Laboratory (2009). Multi-channel sea surface temperature image obtained from http://podaac.jpl.nasa.gov/DATA_PRODUCT/SST, maintained by NASA JPL Physical Oceanography DAAC, Pasadena, CA. Data for the image were provided by the Naval Oceanographic Office (NAVOCEANO). Retrieved January 15, 2009.Google Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn.Princeton University Press, Princeton, USA and Oxford, UK.CrossRefGoogle Scholar
Rokicki, J. (1997). Variation and distribution of the fish parasitic isopod Nerocila orbignyi (Guérin-Méneville, 1829–1832) (Isopoda Cymothoidae). Arthropoda Selecta 6, 5962.Google Scholar
Rokicki, J. and Strömberg, J.-O. (1991). Infestation dynamics of external parasites of saithe (Pollachius virens) from the North and Norwegian Seas. Wiadomości Parazytologiczne 37, 155162.Google ScholarPubMed
Rohde, K. (1984). Ecology of marine parasites. Helgoländer Meeresunters 37, 5–33.Google Scholar
Rohde, K. (1982). Ecology of Marine Parasites. University of Queensland Press, St Lucia, Australia.Google Scholar
Santos, M. J. (1998). Parasitas do robalo (Dicentrarchus labrax L.) da Ria de Aveiro e sua dinâmica populacional. Ph.D. thesis. University of Porto, Porto, Portugal (in Portuguese).Google Scholar
Schmidt, V., Zander, S., Körting, W. and Steinhagen, D. (2003). Parasites of the flounder Platichthys flesus (L.) from the German Bight, North Sea, and their potential use in ecosystem monitoring. A. Infection characteristics of potential indicator species. Helgoland Marine Research 57, 236251.CrossRefGoogle Scholar
Schram, T. A., Knutsen, J. A., Heuch, P. A. and Mo, T. A. (1998). Seasonal occurrence of Lepeophtheirus salmonis and Caligus elongatus (Copepoda: Caligidae) on sea trout (Salmo trutta), off southern Norway. ICES Journal of Marine Science 55, 163175.Google Scholar
Scott, A. (1901). Lepeophtheirus and Lernaea. Liverpool Marine Biology Committee. Memoirs on Typical British Marine Plants and Animals 6, 154.Google Scholar
SPSS Inc. (2007). SPSS Base 16.0 User's Guide. Chicago, IL, USA.Google Scholar
Sulgostowska, T., Banaczyk, G. and Grabda-Kazubska, B. (1987). Helminth fauna of flatfish (Pleuronectiformes) from Gdańsk Bay and adjacent areas (south-east Baltic). Acta Parasitologica Polonica 31, 231240.Google Scholar
van den Broek, W. L. F. (1979). Copepod ectoparasites of Merlangius merlangus and Platichthys flesus. Journal of Fish Biology 14, 371380.Google Scholar