Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T13:11:22.779Z Has data issue: false hasContentIssue false

Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: wolves in a coastal archipelago

Published online by Cambridge University Press:  06 February 2012

HEATHER M. BRYAN*
Affiliation:
Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, Saskatchewan S7N 5B4, Canada Raincoast Conservation Foundation, Box 86, Denny Island, British Columbia V0T 1B0, Canada Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive NW, Alberta T2N 4N1, Canada
CHRIS T. DARIMONT
Affiliation:
Raincoast Conservation Foundation, Box 86, Denny Island, British Columbia V0T 1B0, Canada Environmental Studies Department, 405 ISB, University of California, 1156 High St., Santa Cruz, California 95064, USA
JANET E. HILL
Affiliation:
Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, Saskatchewan S7N 5B4, Canada
PAUL C. PAQUET
Affiliation:
Raincoast Conservation Foundation, Box 86, Denny Island, British Columbia V0T 1B0, Canada Faculty of Environmental Design, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
R. C. ANDREW THOMPSON
Affiliation:
World Health Organization Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
BRENT WAGNER
Affiliation:
Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, Saskatchewan S7N 5B4, Canada
JUDIT E. G. SMITS
Affiliation:
Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, Saskatchewan S7N 5B4, Canada Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive NW, Alberta T2N 4N1, Canada
*
*Corresponding author: Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive NW, Alberta T2N 4N1, Canada. Tel: +403 210 7869. Fax: +403 210 9740. E-mail: [email protected]

Summary

Parasites are increasingly recognized for their profound influences on individual, population and ecosystem health. We provide the first report of gastrointestinal parasites in gray wolves from the central and north coasts of British Columbia, Canada. Across 60 000 km2, wolf feces were collected from 34 packs in 2005–2008. At a smaller spatial scale (3300 km2), 8 packs were sampled in spring and autumn. Parasite eggs, larvae, and cysts were identified using standard flotation techniques and morphology. A subset of samples was analysed by PCR and sequencing to identify tapeworm eggs (n=9) and Giardia cysts (n=14). We detected ⩾14 parasite taxa in 1558 fecal samples. Sarcocystis sporocysts occurred most frequently in feces (43·7%), followed by taeniid eggs (23·9%), Diphyllobothrium eggs (9·1%), Giardia cysts (6·8%), Toxocara canis eggs (2·1%), and Cryptosporidium oocysts (1·7%). Other parasites occurred in ⩽1% of feces. Genetic analyses revealed Echinococcus canadensis strains G8 and G10, Taenia ovis krabbei, Diphyllobothrium nehonkaiense, and Giardia duodenalis assemblages A and B. Parasite prevalence differed between seasons and island/mainland sites. Patterns in parasite prevalence reflect seasonal and spatial resource use by wolves and wolf-salmon associations. These data provide a unique, extensive and solid baseline for monitoring parasite community structure in relation to environmental change.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M. and Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters 9, 467484. doi: 10.1111/j.1461-0248.2005.00879.x.CrossRefGoogle ScholarPubMed
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403410. doi: 10.1016/S0022-2836(05)80360-2.CrossRefGoogle ScholarPubMed
Arizono, N., Shedko, M., Yamada, M., Uchikawa, R., Tegoshi, T., Takeda, K. and Hashimoto, K. (2009). Mitochondrial DNA divergence in populations of the tapeworm Diphyllobothrium nihonkaiense and its phylogenetic relationship with Diphyllobothrium klebanovskii. Parasitology International 58, 2228.CrossRefGoogle ScholarPubMed
Bagrade, G., Kirjusina, M., Vismanis, K. and Ozolins, J. (2009). Helminth parasites of the wolf Canis lupus from Latvia. Journal of Helminthology 83, 6368. doi: 10.1017/s0022149x08123860.CrossRefGoogle ScholarPubMed
Biek, R. and Real, L. A. (2010). The landscape genetics of infectious disease emergence and spread. Molecular Ecology 19, 35153531. doi: 10.1111/j.1365-294X.2010.04679.x.CrossRefGoogle ScholarPubMed
Booth, A. J., Stogdale, L. and Grigor, J. A. (1984). Salmon poisoning disease in dogs on southern Vancouver Island. Canadian Veterinary Journal 25, 26.Google ScholarPubMed
Bowles, J. and McManus, D. P. (1993). NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. International Journal for Parasitology 23, 969972. doi: 10.1016/0020-7519(93)90065-7.CrossRefGoogle ScholarPubMed
Bryan, H. M., Sim, K. A., Darimont, C. T., Paquet, P. C., Wagner, B. W., Muñoz-Fuentes, V., Smits, J. E. and Chilton, N. B. (2010). Identification of Parelaphostrongylus odocoilei (Nematoda: Protostrongylidae) first-stage larvae in the feces of gray wolves (Canis lupis) by molecular methods. Journal of Wildlife Diseases 46, 297302.CrossRefGoogle Scholar
Bush, A. O. and Lotz, J. M. (2000). The ecology of “crowding”. Journal of Parasitology 86, 212213. doi: 10.1645/0022-3395(2000)086[0212:TEOC]2.0.CO;2.Google Scholar
Conlan, J. V., Vongxay, K., Fenwick, S., Blacksell, S. D. and Thompson, R. C. A. (2009). Does interspecific competition have a moderating effect on Taenia solium transmission dynamics in Southeast Asia? Trends in Parasitology 25, 398403. doi: 10.1016/j.pt.2009.06.005.CrossRefGoogle ScholarPubMed
Covacin, C., Aucoin, D., Elliot, A. and Thompson, R. (2011). Genotypic characterisation of Giardia from domestic dogs in the USA. Veterinary Parasitology 177, 2832.CrossRefGoogle ScholarPubMed
Craig, H. L. and Craig, P. S. (2005). Helminth parasites of wolves (Canis lupus): a species list and an analysis of published prevalence studies in Nearctic and Palaearctic populations. Journal of Helminthology 79, 95103. doi: 10.1079/joh2005282.CrossRefGoogle Scholar
Darimont, C., Paquet, P. and Reimchen, T. (2008 a). Spawning salmon disrupt trophic coupling between wolves and ungulate prey in coastal British Columbia. BMC Ecology 8, 14. doi: 10.1186/1472-6785-8-14.CrossRefGoogle ScholarPubMed
Darimont, C. T., Paquet, P. C. and Reimchen, T. E. (2009). Landscape heterogeneity and marine subsidy generate extensive intrapopulation niche diversity in a large terrestrial vertebrate. Journal of Animal Ecology 78, 126133. doi: 10.1111/j.1365-2656.2008.01473.x.Google Scholar
Darimont, C. T., Paquet, P. C., Reimchen, T. E. and Crichton, V. (2005). Range expansion by moose into coastal temperate rainforests of British Columbia, Canada. Diversity and Distributions 11, 235239. doi: 10.1111/j.1366-9516.2005.00135.x.CrossRefGoogle Scholar
Darimont, C. T., Price, M. H. H., Winchester, N. N., Gordon-Walker, J. and Paquet, P. C. (2004). Predators in natural fragments: foraging ecology of wolves in British Columbia's central and north coast archipelago. Journal of Biogeography 31, 18671877. doi: 10.1111/j.1365-2699.2004.01141.x.CrossRefGoogle Scholar
Darimont, C. T., Reimchen, T. E., Bryan, H. M. and Paquet, P. C. (2008 b). Faecal-centric approaches to wildlife ecology and conservation; methods, data and ethics. Wildlife Biology in Practice 4, 7387.CrossRefGoogle Scholar
Darimont, C. T., Reimchen, T. E. and Paquet, P. C. (2003). Foraging behaviour by gray wolves on salmon streams in coastal British Columbia. Canadian Journal of Zoology 81, 349353. doi: 10.1139/z02-246.CrossRefGoogle Scholar
Daszak, P. (2000). Emerging infectious diseases of wildlife – Threats to biodiversity and human health. Science 287, 443449. doi: 10.1126/science.287.5452.443.Google Scholar
Despommier, D., Ellis, B. and Wilcox, B. (2006). The role of ecotones in emerging infectious diseases. EcoHealth 3, 281289. doi: 10.1007/s10393-006-0063-3.CrossRefGoogle Scholar
Dubey, J. P. and Odening, K. (2001). Toxoplasmosis and related infections. In Parasitic Diseases of Wild Mammals, 2nd Edn (ed. Samuel, W. D., Pybus, M. J. and Kocan, A. A.), pp. 478519. Iowa State University Press, Ames, Iowa.CrossRefGoogle Scholar
Foreyt, W. J. (1989). Diagnostic parasitology. Veterinary Clinics of North America Small Animal Practice 19, 9791000.CrossRefGoogle ScholarPubMed
Foreyt, W. J. (2001 a). Salmon poisoning disease. In Infectious Diseases of Wild Mammals, 3rd Edn (ed. Williams, E. S. and Barker, I. K.), pp. 480486. Blackwell Publishing, Ames, Iowa, USA.Google Scholar
Foreyt, W. J. (2001 b). Veterinary Parasitology Reference Manual, 5th Edn. Blackwell Publishing Professional, Ames, Iowa, USA.Google Scholar
Foreyt, W. J., Drew, M. L., Atkinson, M. and McCauley, D. (2009). Echinococcus granulosus in gray wolves and ungulates in Idaho and Montana, USA. Journal of Wildlife Diseases 45, 12081212.CrossRefGoogle ScholarPubMed
Frechette, J. L. (1978). Seasonal changes in the prevalence of ova of Diphyllobothrium ursi and Baylisascaris transfuga in the feces of the black bear (Ursus americanus). Journal of Wildlife Diseases 14, 342344.CrossRefGoogle ScholarPubMed
Gau, R. J., Kutz, S. and Elkin, B. T. (1999). Parasites in grizzly bears from the central Canadian arctic. Journal of Wildlife Diseases 35, 618621.CrossRefGoogle ScholarPubMed
Gentes, M.-L., Whitworth, T. L., Waldner, C., Fenton, H. and Smits, J. E. (2007). Tree swallows (Tachycineta bicolor) nesting on wetlands impacted by oil sands mining are highly parasitized by the bird blow fly Protocalliphora spp. Journal of Wildlife Diseases 43, 167178.CrossRefGoogle ScholarPubMed
Giraudoux, P., Craig, P. S., Delattre, P., Bao, G., Bartholomot, B., Harraga, S., Quere, J. P., Raoul, F., Wang, Y., Shi, D. and Vuitton, D. A. (2003). Interactions between landscape changes and host communities can regulate Echinococcus multilocularis transmission. Parasitology 127, S121S131. doi: 10.1017/s0031182003003512.CrossRefGoogle ScholarPubMed
Goüy de Bellocq, J., Sarà, M., Casanova, J. C., Feliu, C. and Morand, S. (2003). A comparison of the structure of helminth communities in the woodmouse, Apodemus sylvaticus, on islands of the western Mediterranean and continental Europe. Parasitology Research 90, 6470. doi: 10.1007/s00436-002-0806-1.CrossRefGoogle Scholar
Greer, A., Ng, V. and Fisman, D. (2008). Climate change and infectious diseases in North America: the road ahead. Canadian Medical Association Journal 178, 715722. doi: 10.1503/cmaj.081325.Google ScholarPubMed
Hildreth, M. B., Blunt, D. S. and Oaks, J. A. (2004). Lethal effects of freezing Echinococcus multilocularis eggs at ultralow temperatares. Journal of Parasitology 90, 841844. doi: 10.1645/GE-221R.CrossRefGoogle Scholar
Himsworth, C. G., Jenkins, E., Hill, J. E., Nsungu, M., Ndao, M., Andrew Thompson, R. C., Covacin, C., Ash, A., Wagner, B. A., McConnell, A., Leighton, F. A. and Skinner, S. (2010). Emergence of sylvatic Echinococcus granulosus as a parasitic zoonosis of public health concern in an indigenous community in Canada. American Journal of Tropical Medicine and Hygiene 82, 643645. doi: 10.4269/ajtmh.2010.09-0686.Google Scholar
Hudson, P. J., Dobson, A. P. and Lafferty, K. D. (2006). Is a healthy ecosystem one that is rich in parasites? Trends in Ecology & Evolution 21, 381385. doi: 10.1016/j.tree.2006.04.007.CrossRefGoogle Scholar
Jenkins, D. J., Romig, T. and Thompson, R. C. A. (2005). Emergence/re-emergence of Echinococcus spp. – a global update. International Journal for Parasitology 35, 12051219. doi: 10.1016/j.ijpara.2005.07.014.CrossRefGoogle ScholarPubMed
Jolles, A. E., Etienne, R. S. and Olff, H. (2006). Independent and competing disease risks: implications for host populations in variable environments. American Naturalist 167, 745757. doi: 10.1086/503055.Google Scholar
Jones, A. and Pybus, M. J. (2001). Taeniasis and Echinococcosis. In Parasitic diseases of Wild Mammals, 2nd Edn (ed. Samuel, W. M., Pybus, M. J. and Kocan, A. A.), pp. 150192. Iowa State University Press, Ames, Iowa, USA.CrossRefGoogle Scholar
Kreeger, T. J. (2003). The internal wolf: physiology, pathology, and pharmacology. In Wolves: Behaviour, Ecology, and Conservation. (ed. Mech, L. D. and Boitani, L.), pp. 192217. The University of Chicago Press, Chicago, IL, USA.Google Scholar
Kutz, S. J., Hoberg, E. P., Polley, L. and Jenkins, E. J. (2005). Global warming is changing the dynamics of Arctic host-parasite systems. Proceedings of the Royal Society of London, B 272, 25712576. doi: 10.1098/rspb.2005.3285.Google ScholarPubMed
Lasek-Nesselquist, E., Bogomolni, A., Gast, R., Welch, D., Ellis, J., Sogin, M. and Moore, M. (2008). Molecular characterization of Giardia intestinalis haplotypes in marine animals: variation and zoonotic potential. Diseases of Aquatic Organisms 81, 3951. doi: 10.3354/dao01931.CrossRefGoogle ScholarPubMed
McManus, D. P., Zhang, L. H., Castrodale, L. J., Le, T. H., Pearson, M. and Blair, D. (2002). Short report: Molecular genetic characterization of an unusually severe case of hydatid disease in Alaska caused by the cervid strain of Echinococcus granulosus. American Journal of Tropical Medicine and Hygiene 67, 296298.Google Scholar
Mech, D. L. (1970). The Wolf: The Ecology and Behavior of an Endangered Species, University of Minnesota Press, Minneapolis, USA.Google Scholar
Messier, F., Rau, M. E. and McNeill, M. A. (1989). Echinococcus granulosus (Cestoda, Taeniidae) infections and moose-wolf population dynamics in southwestern Quebec. Canadian Journal of Zoology 67, 216219.CrossRefGoogle Scholar
Muñoz-Fuentes, V., Darimont, C. T., Wayne, R. K., Paquet, P. C. and Leonard, J. A. (2009). Ecological factors drive differentiation in wolves from British Columbia. Journal of Biogeography 36, 15161531. doi: 10.1111/j.1365-2699.2008.02067.x.Google Scholar
Nieberding, C., Morand, S., Libois, R. and Michaux, J. R. (2006). Parasites and the island syndrome: the colonization of the western Mediterranean islands by Heligmosomoides polygyrus (Dujardin, 1845). Journal of Biogeography 33, 12121222. doi: 10.1111/j.1365-2699.2006.01503.x.Google Scholar
Paquet, P. C., Alexander, S. M., Swan, P. L. and Darimont, C. T. (2006). Influence of natural landscape fragmentation and resource availability on distribution and connectivity of gray wolves (Canis lupus) in the archipelago of coastal British Columbia, Canada. In Connectivity Conservation. Conservation Biology Book Series (ed. Crooks, K. R. and Sanjayan, M. A.), pp. 130156. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Pinch, L. W. and Wilson, J. F. (1973). Non-surgical management of cystic hydatid disease in Alaska – review of 30 cases of Echinococcus granulosus infection treated without operation. Annals of Surgery 178, 4548.Google Scholar
Price, K., Roburn, A. and MacKinnon, A. (2009). Ecosystem-based management in the Great Bear Rainforest. Forest Ecology and Management 258, 495503. doi: 10.1016/j.foreco.2008.10.010.CrossRefGoogle Scholar
Read, C. P. (1951). The crowding effect in tapeworm infections. Journal of Parasitology 37, 174178.CrossRefGoogle ScholarPubMed
Roberts, L. S. (2000). The crowding effect revisited. The Journal of Parasitology 86, 209211. doi: 10.1645/0022-3395(2000)086[0209:TCER]2.0.CO;2.Google Scholar
Scholz, T., Garcia, H. H., Kuchta, R. and Wicht, B. (2009). Update on the Human Broad Tapeworm (Genus Diphyllobothrium), including clinical relevance. Clinical Microbiology Reviews 22, 146160. doi: 10.1128/cmr.00033-08.CrossRefGoogle ScholarPubMed
Stien, A., Voutilainen, L., Haukisalmi, V., Fugelei, E., Mørk, T., Yoccoz, N. G., Ims, R. A. and Henttonen, H. (2010). Intestinal parasites of the Arctic fox in relation to the abundance and distribution of intermediate hosts. Parasitology 137, 149157. doi: doi:10.1017/S0031182009990953.Google Scholar
Stronen, A. V., Sallows, T., Forbes, G. J., Wagner, B. and Paquet, P. C. (2011). Diseases and parasites in wolves of the Riding Mountain National Park Region, Manitoba, Canada. Journal of Wildlife Diseases 47, 222227.Google Scholar
Telfer, S., Lambin, X., Birtles, R., Beldomenico, P., Burthe, S., Paterson, S. and Begon, M. (2010). Species interactions in a parasite community drive infection risk in a wildlife population. Science 330, 243246. doi: 10.1126/science.1190333.CrossRefGoogle Scholar
Thompson, R. C. A. (2004). The zoonotic significance and molecular epidemiology of Giardia and giardiasis. Veterinary Parasitology 126, 1535. doi: 10.1016/j.vetpar.2004.09.008.CrossRefGoogle ScholarPubMed
Thompson, R. C. A. (2008). The taxonomy, phylogeny and transmission of Echinococcus. Experimental Parasitology 119, 439446. doi: 10.1016/j.exppara.2008.04.016.CrossRefGoogle ScholarPubMed
Thompson, R. C. A., Boxell, A. C., Ralston, B. J., Constantine, C. C., Hobbs, R. P., Shury, T. and Olson, M. E. (2006). Molecular and morphological characterization of Echinococcus in cervids from North America. Parasitology 132, 439447. doi: 10.1017/S0031182005009170.CrossRefGoogle ScholarPubMed
Turner, W. C. and Getz, W. M. (2010). Seasonal and demographic factors influencing gastrointestinal parasitism in ungulates of Etosha National Park. Journal of Wildlife Diseases 46, 11081119.CrossRefGoogle ScholarPubMed