Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T23:01:47.797Z Has data issue: false hasContentIssue false

Schistosoma mansoni cercariae experience influx of macromolecules during skin penetration

Published online by Cambridge University Press:  03 August 2009

J. THORNHILL
Affiliation:
Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
P. M. Z. COELHO
Affiliation:
Laboratório de Esquistossomose, Instituto René Rachou-Fiocruz, Belo Horizonte, MG, Brazil
P. McVEIGH
Affiliation:
Biomolecular Processes: Parasitology, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Queen's University Belfast, Belfast BT9 7BL, UK
A. MAULE
Affiliation:
Biomolecular Processes: Parasitology, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Queen's University Belfast, Belfast BT9 7BL, UK
A. D. JURBERG
Affiliation:
Laboratório de Patologia, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, R.J., Brazil
J. R. KUSEL*
Affiliation:
Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
*
*Corresponding author: Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Level 5, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland, UK. Tel: +44 (0)141 330 6968. Fax: +44 (0)141 330 4600. E-mail: [email protected]

Summary

We have observed that when cercariae penetrate the skin of mice, there is influx into their tissues of Lucifer Yellow and certain labelled molecules of up to 20 kDa molecular weight. This observation was made using a variety of fluorescent membrane-impermeant compounds injected into the skin before the application of cercariae. This unexpected phenomenon was investigated further by transforming cercariae in vitro in the presence of the membrane-impermeant compounds and examining the distribution by microscopy. In schistosomula derived from this procedure, the nephridiopore and surface membrane were labelled while the pre- and post-acetabular glands were not labelled. The region associated with the oesophagus within the pharyngeal muscle clearly contained the fluorescent molecules, as did the region adjacent to the excretory tubules and the germinal mass. We used cercariae stained with carmine to aid identification of regions labelled with Lucifer Yellow. Although the mechanism of this influx is unclear, the observation is significant. From it, we can suggest an hypothesis that, during skin penetration, exposure of internal tissues of the parasite to external macromolecules represents a novel host-parasite interface.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al Adhami, B. H., Doenhoff, M., Thornhill, J., Akhkha, A., White, E. and Kusel, J. R. (2001). A study of some characteristics of individual clones of Schistosoma mansoni with emphasis on the biological and metabolic activities. Parasitology 123, 563572.CrossRefGoogle ScholarPubMed
Alves, L. A., Coutinho-Silva, R., Persechini, P. M., Spray, D. C., Savino, W. and Campos de Carvalho, A. C. (1996). Are there functional gap junctions or junctional hemichannels in macrophages? Blood 88, 328334.CrossRefGoogle ScholarPubMed
Cao, C., Steinberg, T. H., Neu, H. C., Cohen, D., Horwitz, S. B., Hickman, S. and Silverstein, S. C. (1993). Probenecid-resistant J774 cell expression of enhanced organic anion transport by a mechanism distinct from multidrug resistance. Infectious Agents and Disease 2, 193200.Google Scholar
Clegg, J. A. (1965). In vitro cultivation of Schistosoma mansoni. Experimental Parasitology 16, 133147.Google Scholar
Clegg, J. A., Smithers, S. R. and Terry, R. J. (1971). Acquisition of human antigens by Schistosoma mansoni during cultivation in vitro. Nature, London 232, 653654.CrossRefGoogle ScholarPubMed
Colley, D. G. and Wikel, S. K. (1974). Schistosoma mansoni: simplified method for the production of schistosomules. Experimental Parasitology 35, 4451.CrossRefGoogle ScholarPubMed
Cousin, C. E., Stirewalt, M. A., Dorsey, C. H. and Watson, L. P. (1986). Schistosoma mansoni: comparative development of schistosomules produced by artificial techniques. The Journal of Parasitology 72, 606609.Google Scholar
Dean, M. F., Cooper, J. A. and Stahl, P. (1988). Cell contact and direct transfer between co-cultured macrophages and fibroblasts. Journal of Leukocyte Biology 43, 539546.CrossRefGoogle ScholarPubMed
Eugenin, E. A., Branes, M. C., Berman, J. W. and Saez, J. C. (2003). TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. Journal of Immunology 170, 13201328.Google Scholar
Foley, M., Kusel, J. R. and Garland, P. B. (1988). Changes in the organization of the surface membrane upon transformation of cercariae to schistosomula of the helminth parasite Schistosoma mansoni. Parasitology 96, 8597.Google Scholar
Fortes, F. S., Pecora, I. L., Persechini, P. M., Hurtado, S., Costa, V., Coutinho-Silva, R., Braga, M. B., Silva-Filho, F. C., Bisaggio, R. C., De Farias, F. P., Scemes, E., De Carvalho, A. C. and Goldenberg, R. C. (2004). Modulation of intercellular communication in macrophages: possible interactions between GAP junctions and P2 receptors. Journal of Cell Science 117, 47174726.Google Scholar
Gillan, L., Evans, G. and Maxwell, W. M. (2005). Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology 63, 445457.Google Scholar
Haas, W., Grabe, K., Geis, C., Pach, T., Stoll, K., Fuchs, M., Haberl, B. and Loy, C. (2002). Recognition and invasion of human skin by Schistosoma mansoni cercariae: the key-role of L-arginine. Parasitology 124, 153167.CrossRefGoogle ScholarPubMed
Haas, W., Haeberlein, S., Behring, S. and Zoppelli, E. (2008). Schistosoma mansoni: human skin ceramides are a chemical cue for host recognition of cercariae. Experimental Parasitology 120, 9497.CrossRefGoogle ScholarPubMed
Haeberlein, S. and Haas, W. (2008). Chemical attractants of human skin for swimming Schistosoma mansoni cercariae. Parasitology Research 102, 657662.Google Scholar
Hansell, E., Braschi, S., Medzihradszky, K. F., Sajid, M., Debnath, M., Ingram, J., Lim, K. C. and McKerrow, J. H. (2008). Proteomic analysis of skin invasion by blood fluke larvae. PLoS Neglected Tropical Diseases 2, e262.CrossRefGoogle ScholarPubMed
Heinrichs, S. (1985). Differential retrograde labelling with horseradish peroxidase (HRP) and Lucifer yellow (LY) in an invertebrate nervous system – HRP fluorescence and LY preservation limit choice of fixative. Journal of Neuroscience Methods 15, 8593.Google Scholar
Hidalgo, C. and Latorre, R. (1970). Temperature dependence of non-electrolyte and sodium permeability in giant axon of squid. The Journal of Physiology 211, 173191.CrossRefGoogle ScholarPubMed
Hockley, D. J. and McLaren, D. J. (1973). Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm. International Journal for Parasitology 3, 1325.CrossRefGoogle ScholarPubMed
Kusel, J. R., Stones, L. and Harnett, W. (1982). The effects of retinol (vitamin A alcohol) and various non-ionic detergents on the surfaces of schistosomula and adult Schistosoma mansoni. Molecular and Biochemical Parasitology 5, 147163.CrossRefGoogle ScholarPubMed
Machado-Silva, J. R., Pelajo-Machado, M., Lenzi, H. L. and Gomes, D. C. (1998). Morphological study of adult male worms of Schistosoma mansoni Sambon, 1907 by confocal laser scanning microscopy. Memórias do Instituto Oswaldo Cruz 93 (Suppl. 1), 303307.CrossRefGoogle ScholarPubMed
McKerrow, J. H., Keene, W. E., Jeong, K. H. and Werb, Z. (1983). Degradation of extracellular matrix by larvae of Schistosoma mansoni. I. Degradation by cercariae as a model for initial parasite invasion of host. Laboratory Investigation 49, 195200.Google Scholar
McLaren, D. J., Clegg, J. A. and Smithers, S. R. (1975). Acquisition of host antigens by young Schistosoma mansoni in mice: correlation with failure to bind antibody in vitro. Parasitology 70, 6775.CrossRefGoogle ScholarPubMed
McLaren, D. J. and Hockley, D. J. (1977). Blood flukes have a double outer membrane. Nature, London 269, 147149.Google Scholar
Meyer, W., Poehling, H. M. and Neurand, K. (1991). Intraepidermal distribution of free amino acids in porcine skin. Journal of Dermatological Science 2, 383392.CrossRefGoogle ScholarPubMed
Peracchia, C. (1981). Direct communication between axons and sheath glial cells in crayfish. Nature, London 290, 597598.Google Scholar
Ramachandran, H., Skelly, P. J. and Shoemaker, C. B. (1996). The Schistosoma mansoni epidermal growth factor receptor homologue, SER, has tyrosine kinase activity and is localized in adult muscle. Molecular and Biochemical Parasitology 83, 110.Google Scholar
Ramalho-Pinto, F. J., Gazzinelli, G., Howells, R. E., Mota-Santos, T. A., Figueiredo, E. A. and Pellegrino, J. (1974). Schistosoma mansoni: defined system for stepwise transformation of cercaria to schistosomule in vitro. Experimental Parasitology 36, 360372.CrossRefGoogle ScholarPubMed
Ribeiro, A. C., Maldonado Júnior, A., D'Andrea, P. S., Vieira, G. O. and Rey, L. (1998). Susceptibility of Nectomys rattus (Pelzen, 1883) to experimental infection with Schistosoma mansoni (Sambon, 1907): a potential reservoir in Brazil. Memórias do Instituto Oswaldo Cruz 93 (Suppl. 1), 295299.Google Scholar
Schultz, G., Rotatori, D. S. and Clark, W. (1991). EGF and TGF-alpha in wound healing and repair. Journal of Cellular Biochemistry 45, 346352.Google Scholar
Scott, I. R. and Harding, C. R. (1986). Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Developmental Biology 115, 8492.CrossRefGoogle ScholarPubMed
Shimizu, N. and Kawazoe, Y. (1996). A new method for permeabilization of the plasma membrane of cultured mammalian cells. III. Internalization of fluorescent dextrans into cultured mammalian cells by vortex-stirring in the presence of high molecular weight polyacrylic acid. Biological and Pharmaceutical Bulletin 19, 10231025.CrossRefGoogle ScholarPubMed
Shoemaker, C. B., Ramachandran, H., Landa, A., dos Reis, M. G. and Stein, L. D. (1992). Alternative splicing of the Schistosoma mansoni gene encoding a homologue of epidermal growth factor receptor. Molecular and Biochemical Parasitology 53, 1732.Google Scholar
Skelly, P. J., Da'dara, A. and Harn, D. A. (2003). Suppression of cathepsin B expression in Schistosoma mansoni by RNA interference. International Journal for Parasitology 33, 363369.CrossRefGoogle ScholarPubMed
Skelly, P. J. and Shoemaker, C. B. (1996). Rapid appearance and asymmetric distribution of glucose transporter SGTP4 at the apical surface of intramammalian-stage Schistosoma mansoni. Proceedings of the National Academy of Sciences, USA 93, 36423646.Google Scholar
Skelly, P. J. and Shoemaker, C. B. (2001). The Schistosoma mansoni host-interactive tegument forms from vesicle eruptions of a cyton network. Parasitology 122, 6773.Google Scholar
Smith, H. V. and Kusel, J. R. (1979). The acquisition of antigens in the intercellular substance of mouse skin by schistosomula of Schistosoma mansoni. Clinical and Experimental Immunology 36, 430435.Google ScholarPubMed
Steinberg, T. H., Newman, A. S., Swanson, J. A. and Silverstein, S. C. (1987). Macrophages possess probenecid-inhibitable organic anion transporters that remove fluorescent dyes from the cytoplasmic matrix. The Journal of Cell Biology 105, 26952702.Google Scholar
Stirewalt, M. A. (1974). Schistosoma mansoni: cercaria to schistosomule. Advances in Parasitology 12, 115182.CrossRefGoogle ScholarPubMed
Stirewalt, M. A., Cousin, C. E. and Dorsey, C. H. (1983). Schistosoma mansoni: stimulus and transformation of cercariae into schistosomules. Experimental Parasitology 56, 358368.CrossRefGoogle ScholarPubMed
Swanson, J., Bushnell, A. and Silverstein, S. C. (1987). Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules. Proceedings of the National Academy of Sciences, USA 84, 19211925.Google Scholar
Sweet, W. D. and Schroeder, F. (1986). Charged anaesthetics alter LM-fibroblast plasma-membrane enzymes by selective fluidization of inner or outer membrane leaflets. The Biochemical Journal 239, 301310.Google Scholar
Takahashi, M. and Tezuka, T. (2004). The content of free amino acids in the stratum corneum is increased in senile xerosis. Archives of Dermatological Research 295, 448452.Google Scholar
Tanaka, A., Nagate, T. and Matsuda, H. (2005). Acceleration of wound healing by gelatin film dressings with epidermal growth factor. The Journal of Veterinary Medical Science 67, 909913.Google Scholar
Tassin, M. T., Lang, T., Antoine, J. C., Hellio, R. and Ryter, A. (1990). Modified lysosomal compartment as carrier of slowly and non-degradable tracers in macrophages. European Journal of Cell Biology 52, 219228.Google Scholar
Taylor, K. R., Trowbridge, J. M., Rudisill, J. A., Termeer, C. C., Simon, J. C. and Gallo, R. L. (2004). Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. The Journal of Biological Chemistry 279, 1707917084.CrossRefGoogle ScholarPubMed
Whitfield, P. J., Bartlett, A., Khammo, N., Brain, A. P., Brown, M. B., Marriott, C. and Clothier, R. (2003). Delayed tail loss during the invasion of human skin by schistosome cercariae. Parasitology 126, 135140.CrossRefGoogle ScholarPubMed