Published online by Cambridge University Press: 06 April 2009
Clavibacter sp. (syn. Corynebacterium rathayi) adhered to both Anguina funesta (syn. Anguina agrostis) and Anguina tritici, but differences in the nature of adhesion were noted. Similar patterns of binding of the bacteria and of anti-wheat germ agglutinin antibody initially led us to believe that the mechanism of bacterial adhesion was related to the presence of wheat-germ agglutinin (WGA) on the outer cuticle of both species of nematodes and its complementary carbohydrate on the bacterial capsule. However, treatment of either species of nematode with sodium metaperiodate inhibited bacterial adhesion but not the binding of anti-WGA antibody. Bacterial adhesion, therefore, is not mediated by WGA on the nematodes' surface. Moreover, differences in patterns of bacterial adhesion to Anguina species, both before and after treatments with NaCl and detergents, suggest basic interspecific differences in the nature of adhesion. Electron microscopy confirmed the contribution of the nematodes' cuticular surface coat (SC) to the process of adhesion, but it is still not clear how the SC interacts with the bacterial capsule or which of its components are involved. While complete removal of the SC with periodate prevented bacterial adhesion, juveniles that naturally resisted bacterial adhesion did not lack a SC. One explanation could be that the SC of individuals, to which bacteria do not adhere naturally, lacks crucial components that cannot be defined by conventional EM.