Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T21:15:10.508Z Has data issue: false hasContentIssue false

Role of kairomones in host location of the pennellid copepod parasite, Lernaeocera branchialis (L. 1767)

Published online by Cambridge University Press:  01 February 2013

A. J. BROOKER*
Affiliation:
Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
A. P. SHINN
Affiliation:
Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
S. SOUISSI
Affiliation:
Université Lille 1, Sciences et Technologies, UMR CNRS 8187 LOG, Station Marine, 28 Avenue Foch, F-62930 Wimereux, France
J. E. BRON
Affiliation:
Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
*
*Corresponding author:Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK. Tel: +44 (0)1786 467876. Fax: +44 (0)1786 472133. E-mail: [email protected]

Summary

The life cycle of the parasitic copepod Lernaeocera branchialis involves 2 hosts, typically a pleuronectiform host upon which development of larvae and mating of adults occurs and a subsequent gadoid host, upon which the adult female feeds and reproduces. Both the copepodid and adult female stages must therefore locate and identify a suitable host to continue the life cycle. Several mechanisms are potentially involved in locating a host and ensuring its suitability for infection. These may include mechano-reception to detect host movement and chemo-reception to recognize host-associated chemical cues, or kairomones. The aim of this study was to identify the role of kairomones in host location by adult L. branchialis, by analysing their behaviour in response to fish-derived chemicals. Experiments demonstrated that water conditioned by immersion of whiting, Merlangius merlangus, elicited host-seeking behaviour in L. branchialis, whereas cod- (Gadus morhua) conditioned water did not. Lernaeocera branchialis are considered a genetically homogeneous population infecting a range of gadoids. However, their differential response to whiting- and cod-derived chemicals in this study suggests that either there are genetically determined subspecies of L. branchialis or there is some form of environmental pre-conditioning that allows the parasite to preferentially recognize the host species from which it originated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anstensrud, M. (1990). Effects of mating on female behaviour and allometric growth in the two parasitic copepods Lernaeocera branchialis (L., 1767) (Pennellidae) and Lepeophtheirus pectoralis (Muller, 1776) (Caligidae). Crustaceana 59, 245258.CrossRefGoogle Scholar
Anstensrud, M. and Schram, T. A. (1988). Host and site selection by larval stages and adults of the parasitic copepod Lernaeenicus sprattae (Sowerby) (Copepoda, Pennellidae) in the Oslofjord. Hydrobiologia 167–168, 587595.CrossRefGoogle Scholar
Bailey, R. J. E., Birkett, M. A. and Ingvarsdottir, A. (2006). The role of semiochemicals in host location and non-host avoidance by salmon louse (Lepeophtheirus salmonis) copepodids. Canadian Journal of Fisheries and Aquatic Science 63, 448456.CrossRefGoogle Scholar
Begg, G. S. and Bruno, D. W. (1999). The common dab as definitive host for the pennellid copepods Lernaeocera branchialis and Haemobaphes cyclopterina. Journal of Fish Biology 55, 655657.CrossRefGoogle Scholar
Boxshall, G. A. (1976). The host specificity of Lepeophtheirus pectoralis (Müller, 1776) (Copepoda: Caligidae). Journal of Fish Biology 8, 255264.CrossRefGoogle Scholar
Bricknell, I. R., Bron, J. E. and Bowden, T. J. (2006). Diseases of gadoid fish in cultivation: a review. ICES Journal of Marine Science 63, 253266.CrossRefGoogle Scholar
Bron, J. E., Sommerville, C., Jones, M. and Rae, G. H. (1991). The settlement and attachment of early stages of the salmon louse, Lepeoptheirus salmonis (Copepoda: Caligidae) on the salmon host, Salmo salar. Journal of Zoology 224, 201212.CrossRefGoogle Scholar
Bron, J. E., Sommerville, C. and Rae, G. H. (1993). Aspects of the behaviour of the salmon louse Lepeophtheirus salmonis (Krøyer, 1837). In Pathogens of Wild and Farmed Fish: Sea Lice (ed. Boxshall, G. A. and Defaye, D.), pp. 125142. Ellis Horwood, Chichester, UK.Google Scholar
Brooker, A. J., Shinn, A. P. and Bron, J. E. (2007). Review of the biology of the parasitic copepod Lernaeocera branchialis (L. 1767) (Copepoda: Pennellidae). Advances in Parasitology 65, 297341.CrossRefGoogle ScholarPubMed
Capart, A. (1947). Le Lernaeocera branchialis (L.), copepode parasite des gadides. Journal du Conseil International pour l'Exploration de la Mer 15, 6976.CrossRefGoogle Scholar
Capart, A. (1948). Lernaeocera branchialis. Cellulae 52, 159212.Google Scholar
Chrásková, J., Kaminsky, Y. and Krekule, I. (1999). An automatic 3D tracking system with a PC and a single TV camera. Journal of Neuroscience Methods 88, 195200.CrossRefGoogle Scholar
De Beauchamp, P. (1952). Un facteur de la variabilité chez les rotifées du genre Brachionus. Comptes Rende de l'Académie des Sciences 234, 573575.Google Scholar
De Meeus, T., Marin, R. and Renaud, F. (1992). Genetic heterogeneity within populations of Lepeophtheirus europaensis (Copepoda: Caligidae) parasitic on two host species. International Journal for Parasitology 22, 11791181.CrossRefGoogle Scholar
Devine, G., Ingvarsdottir, A., Mordue, W., Pike, A., Pickett, J., Duce, I. and Mordue, A. (2000). Salmon lice, Lepeophtheirus salmonis, exhibit specific chemotactic responses to semiochemicals originating from the salmonid, Salmo salar. Journal of Chemical Ecology 26, 18331848.CrossRefGoogle Scholar
Doall, M. H., Colin, S. P., Strickler, J. R. and Yen, J. (1998). Locating a mate in 3D: the case of Temora longicornis. Philosophical Transactions of the Royal Society London, B 353, 681689.CrossRefGoogle Scholar
Doving, K. B., Westerberg, H. and Johnsen, P. B. (1985). Role of olfaction in the behavioural and neuronal responses of Atlantic salmon, Salmo salar, to hydrographic stratification. Canadian Journal of Fisheries and Aquatic Science 42, 16581667.CrossRefGoogle Scholar
Dutil, J. D. and Coutu, J. M. (1988). Early marine life of the Atlantic salmon, Salmo salar, post smolts in the northern Gulf of St. Lawrence. Fisheries Bulletin US 86, 197212.Google Scholar
Fraile, L., Escoufier, Y. and Raibaut, A. (1993). Analyse des correspondances de données planifiées: etude de la chémotaxie de la larvae infestante d'un parasite. Biometrics 49, 11421153.CrossRefGoogle Scholar
Halley, J. M., Hartley, S. and Kallimanis, A. S. (2004). Uses and abuses of fractal methodology in ecology. Ecology Letters 7, 254271.CrossRefGoogle Scholar
Heuch, P. A. (1995). Experimental evidence for aggregation of salmon louse copepodids (Lepeophtheirus salmonis) in step salinity gradients. Journal of the Marine Biological Association of the UK 75, 927939.CrossRefGoogle Scholar
Heuch, P. A., Doall, M. H. and Yen, J. (2007). Water flow around a fish mimic attracts a parasitic and deters a planktonic copepod. Journal of Plankton Research 29, i3i16.CrossRefGoogle Scholar
Heuch, P. A. and Karlsen, H. E. (1997). Detection of infrasonic water oscillations by copepodids of Lepeophtheirus salmonis (Copepoda: Caligidae). Journal of Plankton Research 19, 735747.CrossRefGoogle Scholar
Heuch, P. A., Parsons, A. and Boxaspen, K. (1995). Diel vertical migration: a possible host-finding mechanism in salmon louse (Lepeophtheirus salmonis) copepodids? Canadian Journal of Fisheries and Aquatic Science 52, 681689.CrossRefGoogle Scholar
Holm, M., Huse, I., Waatevik, E., Doving, K. B. and Aure, J. (1982). Behaviour of Atlantic salmon smolts during seaward migration. I. Preliminary report on ultrasonic tracking in a Norwegian fjord. C.M. 1982/M:7. ICES, Copenhagen, Denmark.Google Scholar
Ingvarsdottir, A., Birkett, M., Duce, I., Genna, R., Mordue, W., Pickett, J., Wadhams, L. and Mordue, A. (2002). Semiochemical strategies for sea louse control: host location cues. Pest Management Science 58, 537545.CrossRefGoogle ScholarPubMed
Kabata, Z. (1979). Parasitic Copepoda of British Fishes. Ray Society, London, UK.Google Scholar
Khan, R. A., Lee, E. M. and Barker, D. (1990). Lernaeocera branchialis: a potential pathogen to cod ranching. Journal of Parasitology 76, 913917.CrossRefGoogle ScholarPubMed
Lewis, A. G. (1963). Life history of the caligid copepod Lepeophtheirus dissimulatus, Wilson, 1905. Pacific Science 17, 195242.Google Scholar
Loehle, C. (1990). Home range: a fractal approach. Landscape Ecology 5, 3952.CrossRefGoogle Scholar
MacKinnon, B. M. (1993). Response of the copepod larvae of Caligus elongatus to light, and the ultrastructure of the eyes. Canadian Journal of Fisheries and Aquatic Science 50, 793799.CrossRefGoogle Scholar
Murlis, J., Elkinton, J. S. and Cardé, R. T. (1992). Odor plumes and how insects use them. Annual Review of Entomology 37, 505532.CrossRefGoogle Scholar
Moore, P. and Crimaldi, J. (2004). Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. Journal of Marine Systems 49, 5564.CrossRefGoogle Scholar
Øines, Ø. and Heuch, P. A. (2005). Identification of sea louse species of the genus Caligus using mtDNA. Journal of the Marine Biological Association of the UK 85, 7379.CrossRefGoogle Scholar
Olsen, R. S. (2001). Lepeophtheirus salmonis: mechanisms for host identification. PhD thesis, University of Bergen, Bergen, Norway.Google Scholar
Pike, A. W., Mordue, A. J. and Ritchie, G. (1993). The development of Caligus elongatus Nordmann from hatching to copepodid in relation to temperature. In Pathogens of Wild and Farmed Fish: Sea Lice (ed. Boxshall, G. A. and Defaye, D.), pp. 5160. Ellis Horwood, Chichester, UK.Google Scholar
Ross, N. W., Firth, K. J., Wang, A., Burka, J. F. and Johnson, S. C. (2000). Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Diseases of Aquatic Organisms 41, 4351.CrossRefGoogle ScholarPubMed
Rittschof, D. and Cohen, J. H. (2004). Crustacean peptide and peptide-like pheromones and kairomones. Peptides 25, 15031516.CrossRefGoogle ScholarPubMed
Sandau, K. and Kurz, H. (1996). Measuring fractal dimension and complexity – an alternative approach with an application. Journal of Microscopy 186, 164176.CrossRefGoogle Scholar
Schmitt, F. G, Seuront, L., Hwang, J-S., Souissi, S. and Tseng, L-C. (2006). Scaling of swimming sequences in copepod behaviour: data analysis and simulation. Physica A 364, 287296.CrossRefGoogle Scholar
Schuurmans Stekhoven, J. H. (1936). Copepoda parasitica from the Belgian coast, II. (Including some habitats in the North Sea). Memoires du Musée Royal d'Histoire Naturelle de Belgique 74, 120.Google Scholar
Scott, A. (1901). Lepeophtheirus and Lernaea. Liverpool Marine Biology Committee Memoirs 6, 54 pp.Google Scholar
Seuront, L., Hwang, J. S. and Tseng, L. C. (2004). Individual variability in the swimming behaviour of the sub-tropical copepod Oncaea venusta (Copepoda: Poecilostomatoida). Marine Ecology Progress Series 283, 199217.CrossRefGoogle Scholar
Sproston, N. G. (1942). The developmental stages of Lernaeocera branchialis. Journal of the Marine Biological Association of the UK 25, 441446.CrossRefGoogle Scholar
Sreenivasan, K. R., Prasad, R. R. and Menavau, C. (1989). The fractal geometry of interfaces and the multifractal distribution of dissipation in fully turbulent flows. In Fractals in Geophysics (ed. Scholz, C. H. and Mandelbrot, B. B.), pp. 4360. Birkäuser, Basel, Switzerland.CrossRefGoogle Scholar
Staaterman, E., Paris, C. B. and Helgers, J. (2012). Orientation behaviour in fish larvae: a missing piece to Hjort's critical period hypothesis. Journal of Theoretical Biology 304, 188196.CrossRefGoogle Scholar
Tiselius, P. and Jonsson, P. R. (1990). Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis. Marine Ecology Progress Series 66, 2333.CrossRefGoogle Scholar
Turchin, P. (1996). Fractal analyses of animal movement: a critique. Ecology 77, 20862090.CrossRefGoogle Scholar
Uttieri, M., Nihongi, A., Mazzocchi, M. G., Strickler, J. R. and Zambianchi, E. (2007). Pre-copulatory swimming behaviour of Leptodiaptomus ashlandi (Copepoda: Calanoida): a fractal approach. Journal of Plankton Research 29, i17i26.CrossRefGoogle Scholar
Westerberg, H. (1982). Ultrasonic tracking of Atlantic salmon (Salmo salar L.) I. Movements in coastal regions. Report of the Institute of Freshwater Research Drottningholm 60, 81101.Google Scholar
Wijesekera, H. W. (1996). Fractal dimension as an indicator for turbulent mixing in the thermocline. Journal of Geophysical Research 101, 703709.CrossRefGoogle Scholar