Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T06:38:58.713Z Has data issue: false hasContentIssue false

Role of hypochlorous acid in Trypanosoma musculi killing by phagocytes

Published online by Cambridge University Press:  06 April 2009

P. Vincendeau
Affiliation:
1Laboratoire de Parasitologie, Université de Bordeaux II, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
S. Daulouède
Affiliation:
1Laboratoire de Parasitologie, Université de Bordeaux II, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
B. Veyret
Affiliation:
2Laboratoire de Chimie Physique A, Université de Bordeaux I, 33405 Talence Cedex, France

Summary

Trypanosoma musculi are readily killed when phagocytosed by mononuclear phagocytes but the nature of the mediators of this cytotoxicity is unclear. Among the most potent mediators are oxygen-derived species. The generation of chemilumine-scence (CL) by peritoneal macrophages from 12 day T. musculi-infected mice, which phagocytose and kill parasites when opsonizing antibodies are present, was recorded in the presence of antibody-coated trypanosomes. Taurine, a specific quencher of hypochlorous acid (HOCl) inhibited CL production by peritoneal macrophages, showing that HOCl is produced during phagocytosis of T. musculi. In vitro, HOCl alone exerted a powerful trypanocidal activity which was inhibited in the presence of specific quenchers. The role of HOCl generated by phagocytes in trypanosome killing was studied using granulocytes which produce more oxygen-derived species than macrophages when stimulated. Phorbol myristate acetate-triggered granulocytes can destroy T. musculi and trypanosome killing is inhibited in the presence of taurine. These data demonstrate that HOC1 produced by phagocytes can effectively destroy T. musculi.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamson, I. A. & Da Silva, W. D. (1977). Antibody-dependent cell-mediated cytotoxicity against T. cruzi. Parasitology 75, 317–23.CrossRefGoogle Scholar
Dallegri, F., Ballestrero, A., Frumento, G. & Patrone, F. (1985). Erythrocyte lysis by PMA-triggered neutrophil polymorphonuclears: evidence for an hypochlorous acid-dependent process. Immunology 55, 639–45.Google ScholarPubMed
De Chatelet, L. R., Shirley, P. S. & Johnston, R. B. (1976). Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes. Blood 47, 545–54.CrossRefGoogle ScholarPubMed
Descamps-Latscha, B., Nguyen, A. T., Golub, R. M. & Feuillet-Fieux, M. N. (1982). Chemiluminescence in microamounts of whole blood for investigation of the human phagocyte oxidative metabolism function. Annales d'Immunologie 133C, 349–64.Google Scholar
Fornier De Violet, P., Veyret, B., Vincendeau, P. & Caristan, A. (1984). Chemiluminescence induced by oxidation of tryptophan by singlet oxygen and by hypochlorous acid. Implications in the luminescence emitted in phagocytosis. Photochemistry and Photobiology, 39, 707–12.CrossRefGoogle ScholarPubMed
Greenblatt, H. C., Diggs, C. L. & Aikawa, M. (1983). Antibody-dependent phagocytosis of Trypanosoma rhodesiense by murine macrophages. American Journal of Tropical Medicine and Hygiene 32, 3445.CrossRefGoogle ScholarPubMed
Krampitz, H. E. (1969). Verbreitung, Wirt-Parasit-Beziehungen und Vermehrung sizilianischer Stämme von Trypanosoma (Herpetosoma) duttoni Thiroux 1905 (Protozoa, Trypanosomatidae). Zeitschrift für Parasitenkunde 32, 297315.CrossRefGoogle ScholarPubMed
Lanham, S. M. (1968). Separation of trypanosomes from the blood of infected rats and mice by anion exchangers. Nature, London 218, 1273–4.CrossRefGoogle ScholarPubMed
Macaskill, J. A., Holmes, P., Whitelaw, D. D., Mcconnel, I. & Urquhart, G. M. (1980). Immunological clearance of 75Se-labelled Trypanosoma brucei in mice. II. Mechanisms in immune animals. Immunology 40, 629–35.Google ScholarPubMed
Morris, J. S. (1966). The acid ionization constant of HOCl from 5 to 35°. Journal of Physical Chemistry 70, 8798–805.CrossRefGoogle Scholar
Nathan, C. F. & Root, R. K. (1977). Hydrogen peroxide release from mouse peritoneal macrophages. Dependence on sequential activation and triggering. Journal of Experimental Medicine 146, 1648–62.CrossRefGoogle ScholarPubMed
Nogueira, N. & Cohn, Z. A. (1978). Trypanosoma cruzi: in vitro induction of macrophage microbial activity. Journal of Experimental Medicine 148, 288300.CrossRefGoogle Scholar
Takayanagi, T., Nakatake, Y. & Enriquez, G. L. (1974). Attachment and ingestion of Trypanosoma gambiense to the rat macrophage by specific antiserum. Journal of Parasitology 60, 336–9.CrossRefGoogle Scholar
Thorne, K. J. I., Svvennsen, R. J. & Franks, D. (1978). Role of hydrogen peroxide and peroxidase in the cytotoxicity of Trypanosoma dionisii by human granulocytes. Infection and Immunity 21, 788805.CrossRefGoogle ScholarPubMed
Vincendeau, P., Caristan, A. & Pautrizel, R. (1981). Macrophage function during Trypanosoma musculi infection in mice. Infection and Immunity 34, 378–81.CrossRefGoogle ScholarPubMed
Vincendeau, P., Daeron, M. & Daulouède, S. (1986 b). Identification of antibody classes and Fc receptors responsible for phagocytosis of Trypanosoma musculi by mouse macrophages. Infection and Immunity 53, 600–5.CrossRefGoogle ScholarPubMed
Vincendeau, P., Guillemain, B., Daulouède, S. & Ripert, C. (1986 a). In vitro growth of Trypanosoma musculi: requirements of cells and serum free culture medium. International Journal for Parasitology 16, 387–90.CrossRefGoogle ScholarPubMed
Weiss, S. J. & Slivka, A. (1982). Monocyte and granulocyte-mediated tumor cell destruction. A role for the hydrogen peroxide-myeloperoxidase-chloride system. Journal of Clinical Investigation 69, 255–62.CrossRefGoogle ScholarPubMed