Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Sacks, David L.
Modi, Govind
Rowton, Edgar
Späth, Gerald
Epstein, Linda
Turco, Salvatore J.
and
Beverley, Stephen M.
2000.
The role of phosphoglycans inLeishmania–sand fly interactions.
Proceedings of the National Academy of Sciences,
Vol. 97,
Issue. 1,
p.
406.
Sacks, David L.
2001.
Leishmania-sand fly interactions controlling species-specific vector competence. Microreview.
Cellular Microbiology,
Vol. 3,
Issue. 4,
p.
189.
Sacks, David
and
Kamhawi, Shaden
2001.
Molecular Aspects of Parasite-Vector and Vector-Host Interactions in Leishmaniasis.
Annual Review of Microbiology,
Vol. 55,
Issue. 1,
p.
453.
Volf, P.
Svobodová, M.
and
Dvoráková, E.
2001.
Bloodmeal digestion and Leishmania major infections in Phlebotomus duboscqi: effect of carbohydrates inhibiting midgut lectin activity.
Medical and Veterinary Entomology,
Vol. 15,
Issue. 3,
p.
281.
Volf, Petr
Skarupová, Sona
and
Man, Petr
2002.
Characterization of the lectin from females of Phlebotomus duboscqi sand flies.
European Journal of Biochemistry,
Vol. 269,
Issue. 24,
p.
6294.
Gossage, Sharon M
Rogers, Matthew E
and
Bates, Paul A
2003.
Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle.
International Journal for Parasitology,
Vol. 33,
Issue. 10,
p.
1027.
Ramalho-Ortigão, J.M
Kamhawi, S
Rowton, E.D
Ribeiro, J.M.C
and
Valenzuela, J.G
2003.
Cloning and characterization of trypsin- and chymotrypsin-like proteases from the midgut of the sand fly vector Phlebotomus papatasi.
Insect Biochemistry and Molecular Biology,
Vol. 33,
Issue. 2,
p.
163.
JOSHI, MANJU B.
MALLINSON, DAVID J.
and
DWYER, DENNIS M.
2004.
The Human Pathogen Leishmania donovani Secretes a Histidine Acid Phosphatase Activity that is Resistant to Proteolytic Degradation.
Journal of Eukaryotic Microbiology,
Vol. 51,
Issue. 1,
p.
108.
Secundino, N.F.C.
Nacif-Pimenta, R.
Hajmova, M.
Volf, P.
and
Pimenta, P.F.P.
2005.
Midgut muscle network in Lutzomyia longipalpis and Phlebotomus duboscqi sand flies: spatial organization and structural modification after blood meal.
Arthropod Structure & Development,
Vol. 34,
Issue. 2,
p.
167.
Boulanger, Nathalie
Bulet, Philippe
and
Lowenberger, Carl
2006.
Antimicrobial peptides in the interactions between insects and flagellate parasites.
Trends in Parasitology,
Vol. 22,
Issue. 6,
p.
262.
Sádlová, Jovana
Volf, Petr
Victoir, Kathleen
Dujardin, Jean-Claude
and
Votýpka, Jan
2006.
Virulent and attenuated lines of Leishmania major: DNA karyotypes and differences in metalloproteinase GP63.
Folia Parasitologica,
Vol. 53,
Issue. 2,
p.
81.
Telleria, Erich Loza
Pitaluga, André nóbrega
Ortigão‐Farias, João Ramalho
de Araújo, Adriana Pereira Oliveira
Ramalho‐Ortigão, José Marcelo
and
Traub‐Cseko, Yara Maria
2007.
Constitutive and blood meal‐induced trypsin genes in Lutzomyia longipalpis.
Archives of Insect Biochemistry and Physiology,
Vol. 66,
Issue. 2,
p.
53.
Jochim, Ryan C
Teixeira, Clarissa R
Laughinghouse, Andre
Mu, Jianbing
Oliveira, Fabiano
Gomes, Regis B
Elnaiem, Dia-Eldin
and
Valenzuela, Jesus G
2008.
The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies.
BMC Genomics,
Vol. 9,
Issue. 1,
Jecna, Lucie
Svarovska, Anna
Besteiro, Sebastien
Mottram, Jeremy C.
Coombs, Graham H.
and
Volf, Petr
2009.
Inhibitor of Cysteine Peptidase Does Not Influence the Development of <I>Leishmania mexicana</I> in <I>Lutzomyia longipalpis</I>.
Journal of Medical Entomology,
Vol. 46,
Issue. 3,
p.
605.
Sant'Anna, Mauricio RV
Diaz-Albiter, Hector
Mubaraki, Murad
Dillon, Rod J
and
Bates, Paul A
2009.
Inhibition of trypsin expression in Lutzomyia longipalpis using RNAi enhances the survival of Leishmania.
Parasites & Vectors,
Vol. 2,
Issue. 1,
Dobson, Deborah E.
Kamhawi, Shaden
Lawyer, Phillip
Turco, Salvatore J.
Beverley, Stephen M.
Sacks, David L.
and
Schneider, David S.
2010.
Leishmania major Survival in Selective Phlebotomus papatasi Sand Fly Vector Requires a Specific SCG-Encoded Lipophosphoglycan Galactosylation Pattern.
PLoS Pathogens,
Vol. 6,
Issue. 11,
p.
e1001185.
Telleria, Erich Loza
Araújo, Adriana Pereira Oliveira de
Secundino, Nágila Francinete
d'Avila-Levy, Claudia Masini
Traub-Csekö, Yara Maria
and
Kelly, Ben L.
2010.
Trypsin-Like Serine Proteases in Lutzomyia longipalpis – Expression, Activity and Possible Modulation by Leishmania infantum chagasi.
PLoS ONE,
Vol. 5,
Issue. 5,
p.
e10697.
Coutinho-Abreu, Iliano V.
Sharma, Narinder K.
Robles-Murguia, Maricela
Ramalho-Ortigao, Marcelo
and
Kamhawi, Shaden
2010.
Targeting the Midgut Secreted PpChit1 Reduces Leishmania major Development in Its Natural Vector, the Sand Fly Phlebotomus papatasi.
PLoS Neglected Tropical Diseases,
Vol. 4,
Issue. 11,
p.
e901.
Dostálová, Anna
and
Volf, Petr
2012.
Leishmania development in sand flies: parasite-vector interactions overview.
Parasites & Vectors,
Vol. 5,
Issue. 1,
Santos, Vania Cristina
Vale, Vladimir Fazito
Silva, Sydnei Magno
Nascimento, Alexandre Alves Sousa
Saab, Natalia Alvim Araujo
Soares, Rodrigo Pedro Pinto
Michalick, Marilene Suzan Marques
Araujo, Ricardo Nascimento
Pereira, Marcos Horacio
Fujiwara, Ricardo Toshio
Gontijo, Nelder Figueiredo
and
Traub-Csekö, Yara M.
2014.
Host Modulation by a Parasite: How Leishmania infantum Modifies the Intestinal Environment of Lutzomyia longipalpis to Favor Its Development.
PLoS ONE,
Vol. 9,
Issue. 11,
p.
e111241.