Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T01:32:26.024Z Has data issue: false hasContentIssue false

Relation of red cell membrane properties to invasion by Plasmodium falciparum

Published online by Cambridge University Press:  06 April 2009

A. R. Dluzewski
Affiliation:
Medical Research Council Cell Biophysics Unit, King's College, Drury Lane, London WC2B 5RL
k. Rangachari
Affiliation:
Medical Research Council Cell Biophysics Unit, King's College, Drury Lane, London WC2B 5RL
R. J. M. Wilson
Affiliation:
National Institute for Medical Research, The RidgewayLondon NW7 1AA
W. B. Gratzer
Affiliation:
Medical Research Council Cell Biophysics Unit, King's College, Drury Lane, London WC2B 5RL

Extract

The effects of changes in red cell membrane properties on invasion by Plasmodium falciparum have been studied by varying the cholesterol content and the intracellular concentration of polyamines. Increased cholesterol content is known to cause large reductions in the internal fluidity of the phospholipid bilayer and a change in its preferred direction of bending, but does not cause changes in gross mechanical rigidity. Polyamines, on the other hand, are thought to increase the cohesion of the membrane cytoskeleton and impede translational diffusion of transmembrane particles, as well as increase trie mechanical rigidity of the membrane. Cells with membranes augmented by 50% in cholesterol show no reduction in their susceptibility to parasitic invasion, whereas an increase in cytosolic polyamine (especially spermine) concentration leads to strong inhibition of invasion. In neither case is the development of the intracellular parasite affected. We conclude that it is the macroscopic, rather than the microscopic rheoelastic properties of the membrane that influence the invasion process. Depletion of membrane cholesterol leads to a substantial reduction in parasitaemia; it is suggested that this is linked to the reduced phosphorus incorporation into spectrin in these cells. Polyamines may exert a significant effect at physiological concentrations and the possibility must be considered that the elevated polyamine levels found in red cells in sickle cell disease may account for the protection against P. falciparum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M., Miller, L. H., Rabbege, J. R. & Epstein, N. (1981). Freeze-fracture study on the erythrocyte membrane during malarial parasite invasion. Journal of Cell Biology 91, 5562.CrossRefGoogle Scholar
Ballas, S. R., Mohandas, N., Marton, L. J. & Shohet, S. B. (1983). Stabilization of erythrocyte membranes by polyamines. Proceedings of the National Academy of Sciences, USA 80, 1942–6.CrossRefGoogle ScholarPubMed
Bartlett, G. R. (1959). Phosphorus assay in column chromatography. Journal of Biological Chemistry 234, 466–8.CrossRefGoogle ScholarPubMed
Bruckdorfer, K. B., Demel, R. A., Degier, J. & Van Deenen, L. L. M. (1969). The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol Permeability of erythrocytes. Biochimica et Biophysica Acta 183, 334–5.CrossRefGoogle ScholarPubMed
Chabanal, A., Flamm, M., Sung, K. L. P., lee, M. M., Schachter, D. & Chien, S. (1983). Influence of cholesterol content on red cell viscoelasticity and fluidity. Biophysical Journal 44, 171–6.CrossRefGoogle Scholar
Chailley, B., Giraud, F. & Claret, M. (1981). Alteration in human erythrocyte shape and the state of spectrin and phospholipid phosphorylation induced by cholesterol depletion. Biochimica et Biophysica Acta 643, 636–41.CrossRefGoogle ScholarPubMed
Cooper, R. A., Leslie, M. H., Fischkoff, S., Shinitzky, M.J. & Shattil, S. S. (1978). Factors influencing the lipid composition and fluidity of red cell membranes in vitro: production of red cells possessing more than two cholesterols per phospholipid. BiochemistryM 17, 327–31.CrossRefGoogle ScholarPubMed
Courchaine, A. J., Miller, W. H. & Stein, D. B. (1959). Rapid semimicro procedure for estimating free and total cholesterol. Clinical Chemistry 5, 609–14.CrossRefGoogle ScholarPubMed
Dluzewski, A. R., Rangachari, K., Wilson, R. J. M. & Gratzer, W. B. (1981). Entry of malaria Parasites into resealed ghosts of human and simian erythrocytes. British Journal of Haematology 49, 97101.CrossRefGoogle ScholarPubMed
Dluzewski, A. R., Rangachari, K., wilson, R. J. M. & Gratzer, W. B. (1983 a). A cytoplasmic requirement of red cells for invasion by malarial parasites. Molecular and Biochemical Parasitology 9, 145–60.CrossRefGoogle ScholarPubMed
Dluzewski, A. R., Rangachari, K., Gratzer, W. B. & Wilson, R. J. M. (1983 b). Inhibition of malaral invasion of red cells by chemical and immunochemical linking of spectrin molecules. British Journal of Haematology 55, 629–37.CrossRefGoogle ScholarPubMed
Dluzewski, A. R., Ling, I. T., Rangachari, K., Bates, P. A. & Wilson, R. J. M. (1984). A simple Method for isolating viable mature parasites of Plasmodium falciparum from cultures. Transactions Of the Royal Society of Tropical Medicine and Hygiene 78, 622–4.CrossRefGoogle ScholarPubMed
Grunze, M. & Deuticke, B. (1974). Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes. Biochimica et Biophysica Acta 356, 125–30.CrossRefGoogle ScholarPubMed
Hui, S. W., Stewart, C. M., Carpenter, M. P. & Stewart, T. P. (1980). Effects of cholesterol on lipid organisation in human erythrocyte membrane. Journal of Cell Biology 85, 283–91.CrossRefGoogle ScholarPubMed
Jungery, M., Pasvol, G., Newbold, C. I. & Weatherall, D. J. (1983). A lectin-like receptor is involved in invasion of erythrocytes by Plasmodium falciparum. Proceedings of the National Academy Of the United States 80, 1018–22.CrossRefGoogle ScholarPubMed
Kirby, C. J. & Green, C. (1980). Erythrocyte membrane cholesterol levels and their effects on membrane proteins. Biochimica et Biophysica Acta 598, 422–5.CrossRefGoogle ScholarPubMed
Kroes, J., Ostwald, M. & Keith, A. D. (1972). Erythrocyte membranes – compression of lipid phases by increased cholesterol content. Biochimica et Biophysica Acta 274, 71–4.CrossRefGoogle ScholarPubMed
Lange, Y., Cutler, H. B. & Steck, T. L. (1980). The effect of cholesterol and other intercalated amphipaths on the contour and stability of the isolated red cell membrane. Journal of Biological Chemistry 255, 9331–7.CrossRefGoogle ScholarPubMed
Lange, Y., Dolde, J. & Steck, T. L. (1981). The rate of transbilayer movement of cholesterol in the human erythrocyte. Journal of Biological Chemistry 256, 5321–3.CrossRefGoogle Scholar
Lange, Y. & Slayton, J. M. (1982). Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape. Journal of Lipid Research 23, 1124–7.CrossRefGoogle ScholarPubMed
Mclaren, D. J., Bannister, L. H., Trigg, P. I. & Butcher, G. A. (1979). Freeze-fracture studies on the interaction between the malaria parasite and the host erythrocyte in Plasmodium knowlesi infections. Parasitology 79, 125–39.CrossRefGoogle ScholarPubMed
Moulinoux, J. P., Le Calve, M., Quemener, V. & Quas, G. (1984). In vitro studies on the entry of polyamines into normal red blood cells. Biochimie 66, 385–93.CrossRefGoogle ScholarPubMed
Natta, C. L., Motyczka, A. A. & Kremzner, L. T. (1980). Polyamines in sickle cell disease. Biochemical Medicine 23, 144–9.CrossRefGoogle ScholarPubMed
Pasvol, G., Weatherall, D. J. & Wilson, R. J. M. (1978). Cellular mechanism for the protective effect of haemoglobin in P. Falciparum malaria. Nature, London 274, 701–3.CrossRefGoogle ScholarPubMed
Saul, A., Myler, P., Elliott, T. & Kidson, C. (1982). Purification of mature schizonts of Plasmodium falciparum in colloidal silica gradients. Bulletin of the World Health Organization 60, 755–60.Google ScholarPubMed
Saul, A., Lamont, G. S., Mover, W. H. & Kidson, C. (1984). Decreased membrane deformability in melanesian ovalocytes from Papua New Guinea. Journal of Cell Biology 98, 1348–54.CrossRefGoogle ScholarPubMed
Schindler, M., koppel, D. E. & Sheetz, M. P. (1980). Modulation of membrane protein lateral mobility by polyphosphates and polyamines. Proceedings of the National Academy of Sciences, USA 77, 1457–61.CrossRefGoogle ScholarPubMed
Sheetz, M. P. & Casaly, J. (1980). 2, 3-Diphosphoglycerate and ATP dissociate membrane skeletons. Journal of Biological Chemistry 255, 9955–60.CrossRefGoogle Scholar
Swendseid, M. D., Panaqua, M. & Kopple, J. D. (1980). Polyamine concentrations in red cells and urine of patients with chronic renal failure. Life Sciences 26, 533–9.CrossRefGoogle ScholarPubMed
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.CrossRefGoogle ScholarPubMed