Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T01:11:01.002Z Has data issue: false hasContentIssue false

Purification and characterization of phosphoenolpyruvate carboxykinase from Raillietina echinobothrida, a cestode parasite of the domestic fowl

Published online by Cambridge University Press:  20 August 2012

B. DAS
Affiliation:
Department of Zoology, North Eastern Hill University, Shillong-793022, India
V. TANDON*
Affiliation:
Department of Zoology, North Eastern Hill University, Shillong-793022, India
J. K. SAXENA
Affiliation:
Biochemistry Division, Central Drug Research Institute, Lucknow-226001, India
S. JOSHI
Affiliation:
Biochemistry Division, Central Drug Research Institute, Lucknow-226001, India
A. R. SINGH
Affiliation:
Biochemistry Division, Central Drug Research Institute, Lucknow-226001, India
*
*Corresponding author: Department of Zoology, North Eastern Hill University, Shillong-793022, India. Tel: +91 364 2722312. Fax: +91 364 2550300/2550108. E-mail: [email protected]

Summary

Phosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.32) is an essential regulatory enzyme of glycolysis in helminths in contrast to its role in gluconeogenesis in their host. Previously we have reported that phytochemicals from Flemingia vestita (Family: Fabaceae), genistein in particular, have vermifugal action and are known to affect carbohydrate metabolism in the cestode, Raillietina echinobothrida. In order to determine the functional differences of PEPCK from the parasite and its avian host (Gallus domesticus), we purified the parasite enzyme apparently to homogeneity, and characterized it. The native PEPCK is a monomer with a subunit molecular weight of 65 kDa. The purified enzyme displayed standard Michaelis-Menten kinetics with Km value of 42·52 μM for its substrate PEP. The Ki for the competitive inhibitors GTP, GMP, ITP and IMP for the carboxylation reaction were determined and discussed. In order to identify putative modulators from plant sources, phytochemicals from F. vestita and Stephania glabra were tested on the purified PEPCK, which resulted in alteration of its activity. From our results, we hypothesize that PEPCK may be a potential target site for anthelmintic action.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ballard, F. J. and Hanson, R. W. (1969). Purification of phosphoenolpyruvate carboxykinase from the cytosol fraction of rat liver and the immunochemical demonstration of differences between this enzyme and the mitochondrial phosphoenolpuryvate carboxykinase. Journal of Biological Chemistry 244, 56255630.CrossRefGoogle Scholar
Barrett, J. (1973). Nucleoside triphosphate metabolism in the muscle tissue of Ascaris lumbricoides (Nematoda). International Journal for Parasitology 3, 393400.CrossRefGoogle ScholarPubMed
Behm, C. A. and Bryant, C. (1975 a). Studies of regulatory metabolism in Moniezia expansa: general conditions. International Journal for Parasitology 5, 209217.CrossRefGoogle Scholar
Behm, C. A. and Bryant, C. (1975 b). Studies of regulatory metabolism in Moniezia expansa: The role of phosphoenolpyruvate carboxykinase. International Journal for Parasitology 5, 347354.CrossRefGoogle ScholarPubMed
Behm, C. A. and Bryant, C. (1982). Phosphoenolpyruvate carboxykinase from Fasciola hepatica. International Journal for Parasitology 12, 271278.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Brinkworth, R. I., Hanson, R. W., Fullin, F. A. and Schramm, V. L. (1981). Mn2+-sensitive and insensitive forms of phosphoenolpyruvate carboxykinase (GTP). Journal of Biological Chemistry 256, 1079510802.CrossRefGoogle ScholarPubMed
Bryant, C. (1975). Carbon dioxide utilisation, and the regulation of respiratory metabolic pathways in parasitic helminths. Advances in Parasitology 13, 3569.CrossRefGoogle ScholarPubMed
Bueding, E. and Saz, H. J. (1968). Pyruvate kinase and phosphoenolpyruvate carboxykinase activities of Ascaris muscle, Hymenolepis diminuta and Schistosoma mansoni. Comparative Biochemistry and Physiology 24, 511518.CrossRefGoogle ScholarPubMed
Christie, D. A., Powell, J. W., Stables, J. N. and Watt, R. A. (1987). A nuclear magnetic resonance study of the role of phosphoenolpyruvate carboxykinase (PEPCK) in the glucose metabolism of Dipetalonema viteae. Molecular and Biochemical Parasitology 24, 125130.CrossRefGoogle ScholarPubMed
Colombo, G., Carlson, G. M. and Lardy, H. A. (1978). Phosphoenolpyruvate carboxykinase (guanosine triphosphate) from rat liver cytosol. Separation of homogeneous forms of the enzyme with high and low activity by chromatography on agarose-hexane-guanosine triphosphate. Biochemistry 17, 53215329.CrossRefGoogle ScholarPubMed
Cornish, R. A., Wilkes, J. and Mettrick, D. F. (1981). A study of phosphoenolpyruvate carboxykinase from Moniliformis dubius (acanthocephala). Molecular and Biochemical Parasitology 2, 151166.CrossRefGoogle ScholarPubMed
Das, B., Tandon, V., Lyndem, L. M., Gray, A. I. and Ferro, V. A. (2009). Phytochemicals from Flemingia vestita (Fabaceae) and Stephania glabra (Menispermeaceae) alter cGMP concentration in the cestode Raillietina echinobothrida. Comparative Biochemistry and Physiology 149C, 397403.Google Scholar
Das, B., Tandon, V. and Saha, N. (2004 a). Anthelmintic efficacy of Flemingia vestita (Fabaceae): alteration in the activities of some glycolytic enzymes in the cestode, Raillietina echinobothrida. Parasitology Research 93, 253261.CrossRefGoogle ScholarPubMed
Das, B., Tandon, V. and Saha, N. (2004 b). Effects of phytochemicals of Flemingia vestita (Fabaceae) on glucose 6-phosphate dehydrogenase and enzymes of gluconeogenesis in a cestode (Raillietina echinobothrida). Comparative Biochemistry and Physiology 139C, 141146.Google Scholar
Das, B., Tandon, V. and Saha, N. (2006). Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl. Parasitology International 55, 1721.CrossRefGoogle ScholarPubMed
Dávila, C., Malagón, D., Valero, A., Benítez, R. and Adroher, F. J. (2006) Anisakis simplex: CO(2)-fixing enzymes and development throughout the in vitro cultivation from third larval stage to adult. Experimental Parasitology 114, 1015.CrossRefGoogle ScholarPubMed
Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F. and Viollet, B. (2010). Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. Journal of Clinical Investigation 120, 23552369.CrossRefGoogle Scholar
Fukumoto, S. (1985). Pyruvate kinase isoenzymes and phosphoenolpyruvate carboxykinase during development of Spirometra erinacei. Yonago Acta Medica 28, 89105.Google Scholar
Haridas, V., Xu, Z. X., Kitchen, D., Jiang, A., Michels, P. and Gutterman, J. U. (2011). The anticancer plant triterpenoid, avicin D, regulates glucocorticoid receptor signaling: implications for cellular metabolism. Public Library of Science One 6, e28037.Google ScholarPubMed
Hebda, C. A. and Nowak, T. (1982 a). The purification, characterization, and activation of phosphoenolpyruvate carboxykinase from chicken liver mitochondria. Journal of Biological Chemistry 257, 55035514.CrossRefGoogle ScholarPubMed
Hebda, C. A. and Nowak, T. (1982 b). Phosphoenolpyruvate carboxykinase. Mn2+ and Mn2+ substrate complexes. Journal of Biological Chemistry 257, 55155522.CrossRefGoogle ScholarPubMed
Hoffmann, K. H., Mustafa, T. and Jorgensen, J. B. (1979). Role of pyruvate kinase, phosphoenolpyruvate carboxykinase, malic enzyme and lactate dehydrogenase in anaerobic energy metabolism of Tubifex spec. Journal of Comparative Physiology 130, 337345.CrossRefGoogle Scholar
Kim, Y. D., Park, K. G., Lee, Y. S., Park, Y. Y., Kim, D. K., Nedumaran, B., Jang, W. G., Cho, W. J., Ha, J., Lee, I. K., Lee, C. H. and Choi, H. S. (2008). Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57, 306314.CrossRefGoogle ScholarPubMed
Klein, R. D., Winterrowd, C. A., Hatzenbuhler, N. T., Shea, M. H., Favreau, M. A., Nulf, S. C. and Geary, T. G. (1992). Cloning of a cDNA encoding phosphoenolpyruvate carboxykinase from Haemonchus contortus. Molecular and Biochemical Parasitology 50, 285294.CrossRefGoogle ScholarPubMed
Korting, W. and Fairbairn, D. (1972). Anaerobic energy metabolism in Moniliformis dubius (Acanthocephala). Journal of Parasitology 58, 4550.CrossRefGoogle ScholarPubMed
Lee, M. H., Hebda, C. A. and Nowak, T. (1981). The role of cations in avian liver phosphoenolpyruvate carboxykinase catalysis: activation and regulation. Journal of Biological Chemistry 256, 1279312801.CrossRefGoogle ScholarPubMed
McManus, D. P. and Smyth, J. D. (1982). Intermediary carbohydrate metabolism in protoscoleces of Echinococcus granulosus (horse and sheep strains) and E. multilocularis. Parasitology 84, 351366.CrossRefGoogle ScholarPubMed
Mommsen, T. P., Walsh, P. J. and Moon, T. W. (1985). Gluconeogenesis in hepatocytes and kidney of atlantic salmon. Molecular Physiology 8, 89100.Google Scholar
Moon, T. W., Mustafa, T., Hulbert, W. C., Podesta, R. B. and Metrrik, D. F. (1977). The phosphoenolpyruvate branch point in adult Hymenolepis diminuta (Cestoda): a study of pyruvate kinase and phosphoenolpyruvate carboxykinase. Journal of Experimental Zoology 200, 325326.CrossRefGoogle Scholar
Nelson, D. L. and Cox, M. M. (2008). Lehninger Principles of Biochemistry 5th Edn. W.H. Freeman and Company, New York, USA.Google Scholar
Noce, P. S. and Utter, M. F. (1975). Decarboxylation of oxalacetate to pyruvate by purified avian liver phosphoenolpyruvate carboxykinase. Journal of Biological Chemistry 250, 90999105.CrossRefGoogle ScholarPubMed
Prichard, R. K. (1976). Regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase activity in adult Fasciola hepatica (Trematoda). International Journal for Parasitology 6, 227233.CrossRefGoogle ScholarPubMed
Rao, H. S. P. and Reddy, K. S. (1991). Isoflavones from Flemingia vestita. Fitoterapia 63, 458.Google Scholar
Rathaur, S., Anwar, N., Saxena, J. K. and Ghatak, S. (1982). Setaria cervi: Enzymes in microfilariae and in vitro action of antifilarials. Zeitschrift für Parasitenkunde 68, 331338.CrossRefGoogle ScholarPubMed
Reynolds, C. H. (1980). Phosphoenolpyruvate carboxykinase from the rat and from the tapeworm, Hymenolepis diminuta. Comparative Biochemistry and Physiology 65B, 481487.Google Scholar
Rohrer, S. P., Saz, H. J. and Nowak, T. (1986). Purification and characterization of phosphoenolpyruvate carboxykinase from the parasitic helminth Ascaris suum. Journal of Biological Chemistry 261, 1304913055.CrossRefGoogle ScholarPubMed
Sambrook, J. and Russell, D. (2001). Molecular Cloning: A Laboratory Manual 3rd Edn. Cold Springs Harbour Press, New York, USA.Google Scholar
Senft, A. W., Miech, R. P., Brown, P. R. and Senft, D. G. (1972). Purine metabolism in Schistosoma mansoni. International Journal for Parasitology 2, 249260.CrossRefGoogle ScholarPubMed
Smyth, J. D. and McManus, D. P. (1989). The Physiology and Biochemistry of Cestodes, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Soulsby, E. J. L. (1982). Helminths, Arthropods and Protozoa of Domesticated Animals, ELBS and Bailliere Tindall, London, UK.Google Scholar
Tandon, V. and Das, B. (2007). In vitro testing of anthelmintic efficacy of Flemingia vestita (Fabaceae) on carbohydrate metabolism in Raillietina echinobothrida. Methods 42, 330338.CrossRefGoogle Scholar
Tandon, V., Lyndem, L. M., Kar, P. K., Pal, P., Das, B. and Rao, H. S. P. (2004). Anthelmintic efficacy of rhizome-pulp extract of Stephania glabra and aerial root extract of Trichosanthes multiloba in vitro: two indigenous plants in Shillong, India. Journal of Parasitic Diseases 28, 3744.Google Scholar
Tandon, V., Pal, P., Roy, B., Rao, H. S. P. and Reddy, K. S. (1997). In vitro anthelmintic activity of root tuber extract of Flemingia vestita, an indigenous plant in Shillong, India. Parasitology Research 83, 492498.CrossRefGoogle Scholar
Tielens, A. G. M., Van Den Heuvel, J. M. and Van Den Bergh, S. G. (1987). Differences in intermediary energy metabolism between juvenile and adult Fasciola hepatica. Molecular and Biochemical Parasitology 24, 273281.CrossRefGoogle ScholarPubMed
Tielens, A. G. M., Van Der Meer, P., Van Den Heuvel, J. M. and Van Den Bergh, S. G. (1991). The enigmatic presence of all gluconeogenic enzymes in Schistosoma mansoni adults. Parasitology 102, 267276.CrossRefGoogle ScholarPubMed
Utter, M. F. and Kurahashi, K. (1954). Mechanism of action of oxalacetic carboxylase. Journal of Biological Chemistry 207, 821841.CrossRefGoogle ScholarPubMed
Wilkes, J., Cornish, R. A. and Mettrick, D. F. (1981). Purification and properties of phosphoenolpyruvate carboxykinase from Hymenolepis diminuta (Cestoda). Journal of Parasitology 67, 832840.CrossRefGoogle ScholarPubMed
Wilkes, J., Cornish, R. A. and Mettrick, D. F. (1982). Purification and properties of phosphoenolpyruvate carboxykinase from Ascaris suum. International Journal for Parasitology 12, 163171.CrossRefGoogle ScholarPubMed
Witters, L. (2001). The blooming of the French lilac. Journal of Clinical Investigation 108, 11051107.CrossRefGoogle ScholarPubMed
Xia, X., Yan, J., Shen, Y., Tang, K., Yin, J., Zhang, Y., Yang, D., Liang, H., Ye, J. and Weng, J. (2011). Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. Public Library of Science One 6, e16556.Google ScholarPubMed