Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T02:27:56.317Z Has data issue: false hasContentIssue false

Prevalence of infection and 18S rRNA gene sequences of Cytauxzoon species in Iberian lynx (Lynx pardinus) in Spain

Published online by Cambridge University Press:  28 February 2007

J. MILLÁN*
Affiliation:
Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Pabellón del Perú, Avda. María Luisa s/n, 41013-Sevilla, Spain
V. NARANJO
Affiliation:
Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071-Ciudad Real, Spain
A. RODRÍGUEZ
Affiliation:
Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Pabellón del Perú, Avda. María Luisa s/n, 41013-Sevilla, Spain
J. M. PÉREZ DE LA LASTRA
Affiliation:
Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071-Ciudad Real, Spain
A. J. MANGOLD
Affiliation:
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
J. DE LA FUENTE
Affiliation:
Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071-Ciudad Real, Spain Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
*
*Corresponding author: Estación Biológica de Doñana (CSIC), Pabellón del Perú, Avda. María Luisa s/n, 41013-Sevilla, Spain. Tel: +34 954323240. Fax: +34 954621125. E-mail: [email protected]

Summary

The Iberian lynx (Lynx pardinus) is the most endangered felid in the world. Only about 160 individuals remain in 2 separate metapopulations in Southern Spain (Sierra Morena and Doñana). We obtained blood samples of 20 lynxes captured from 2004 to 2006, and determined the prevalence of infection and genetic diversity of Cytauxzoon spp. using 18S rRNA PCR and sequence analysis. Prevalence of infection was 15% (3 of 20). Cytauxzoon sp. was only detected in Sierra Morena. For phylogenetic analysis, we used the sequences reported in the present study and those characterized in different domestic and wild felids and ticks from North and South America, Asia and Europe. Three different Cytauxzoon sp. sequences were obtained. They were closely related to that obtained from a Spanish cat, but diverged in up to 1·0% with respect to the only previously reported sequence from an Iberian lynx. Conversely, the latter sequence clustered together with C. manul sequences obtained from Pallas cats (Otocolobus manul) in Mongolia. Our analysis yields a separate cluster of C. felis sequences from cats, wild felids and ticks in the United States and Brazil. These results suggest that at least 2 different Cytauxzoon spp. may be present in Iberian lynx. The apparent absence in one of the areas, together with the possibility of fatal cytauxzoonosis in lynxes makes necessary disease risks to be taken into account in management conservation strategies, such as translocations and re-introductions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsopp, M. T., Cavalier-Smith, T., De Waal, D. T. and Allsopp, B. A. (1994). Phylogeny and evolution of the piroplasms. Parasitology 108, 147152.CrossRefGoogle ScholarPubMed
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Bondy, P. J. Jr., Cohn, L. A., Tyler, J. W. and Marsh, A. E. (2005). Polymerase chain reaction detection of Cytauxzoon felis from field-collected ticks and sequence analysis of the small subunit and internal transcribed spacer 1 region of the ribosomal RNA gene. Journal of Parasitology 91, 458461.CrossRefGoogle ScholarPubMed
Birkenheuer, A. J., Le, J. A., Valenzisi, A. M., Tucker, M. D., Levy, M. G. and Breitschwerdt, E. B. (2006 a). Cytauxzoon felis infection in cats in the mid-Atlantic states: 34 cases (1998–2004). Journal of the American Veterinary Medicine Association 228, 568571.CrossRefGoogle ScholarPubMed
Birkenheuer, A. J., Marr, H., Alleman, A. R., Levy, M. G. and Breitschwerdt, E. B. (2006 b). Development and evaluation of a PCR assay for the detection of Cytauxzoon felis DNA in feline blood samples. Veterinary Parasitology 137, 144149.CrossRefGoogle ScholarPubMed
Blouin, E. F., Kocan, A. A., Kocan, K. M. and Hair, J. (1987). Evidence of a limited schizogonous cycle for Cytauxzoon felis in bobcats following exposure to infected ticks. Journal of Wildlife Diseases 23, 499501.CrossRefGoogle ScholarPubMed
Criado-Fornelio, A., González del, M. A., Buling-Saraña, A. and Barba-Carretero, J. C. (2004). The “expanding universe” of piroplasms. Veterinary Parasitology 119, 337345.CrossRefGoogle Scholar
de Castro, F. and Bolker, B. (2005). Mechanisms of disease-induced extinction. Ecology Letters 8, 117126.CrossRefGoogle Scholar
Deem, S. L., Karesh, W. B. and Weisman, W. (2001). Putting theory into practice: wildlife health in conservation. Conservation Biology 15, 12241233.CrossRefGoogle Scholar
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Ferreras, P., Delibes, M., Palomares, F., Fedriani, J. M., Calzada, J. and Revilla, E. (2004). Dispersal in the Iberian lynx: factors affecting the start, duration, distance and dispersal success. Behavioral Ecology 15, 3140.CrossRefGoogle Scholar
Forrester, D. J. (1992). Parasites and Diseases of Wild Mammals in Florida. University Press of Florida, Gainesville, Florida.Google Scholar
Fox, G. E., Wisotzkey, J. D. and Jurtshuk, P. Jr. (1992). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic Bacteriology 42, 166170.CrossRefGoogle Scholar
Garner, M. M., Lung, N. P., Citino, S., Greiner, E. C., Harvey, J. W. and Homer, B. L. (1996). Fatal cytauxzoonosis in a captive-reared white tiger (Panthera tigris). Veterinary Pathology 33, 8286.CrossRefGoogle Scholar
Glenn, B. L., Rolley, R. E. and Kocan, A. A. (1982). Cytauxzoon-like piroplasms in erythrocytes of wild-trapped bobcats in Oklahoma. Journal of the American Veterinary Medical Association 181, 12511253.Google Scholar
Guzmán, J. N., García, F. J., Garrote, G., Pérez de, R. and Iglesias, C. (2004). El Lince ibérico (Lynx pardinus) en España y Portugal. Censo-diagnóstico de sus Poblaciones. Dirección General para la Biodiversidad, Ministerio de Medio Ambiente, Madrid.Google Scholar
Haydon, D. T., Laurenson, M. K. and Sillero-Zubiri, C. (2002). Integrating epidemiology into population viability analysis: managing the risk posed by rabies and canine distemper to the Ethiopian wolf. Conservation Biology 16, 13721385.CrossRefGoogle Scholar
Ketz-Riley, C. J., Reichard, M. V., Van den Bussche, R. A., Hoover, J. P., Meinkoth, J. and Kocan, A. A. (2003). An intraerythrocytic small piroplasm in wild-caught Pallas's cats (Otocolobus manul) from Mongolia. Journal of Wildlife Diseases 39, 424430.CrossRefGoogle ScholarPubMed
Kier, A. B. and Greene, C. E. (1998). Cytauxzoonosis. In Infectious Diseases of Dog and Cat (ed. Greene, C. E.), pp. 517519. W.B. Saunders Company, Pennsylvania, USA.Google Scholar
Kier, A. B., Wightman, S. R. and Wagner, J. E. (1982). Interspecies transmission of Cytauxzoon felis. American Journal of Veterinary Research 43, 102105.Google ScholarPubMed
Kocan, A. A., Blouin, E. F. and Glenn, B. L. (1985). Hematologic and serum chemical values for free-ranging bobcats, Felis rufus (Schreber), with reference to animals with natural infections of Cytauxzoon felis Kier, 1979. Journal of Wildlife Diseases 21, 190192.CrossRefGoogle ScholarPubMed
Kumar, S., Tamura, K. and Nei, M. (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150163.CrossRefGoogle ScholarPubMed
Luaces, I., Aguirre, E., García-Montijano, M., Velarde, J., Tesouro, M. A., Sánchez, C., Galka, M., Fernández, P. and Sainz, A. (2005). First report of an intraerythrocytic small piroplasm in wild Iberian lynx (Lynx pardinus). Journal of Wildlife Diseases 41, 810815.CrossRefGoogle ScholarPubMed
Mathews, F., Moro, D., Strachan, R., Gelling, M. and Buller, N. (2006). Health surveillance in wildlife reintroductions. Biological Conservation 131, 338347.CrossRefGoogle Scholar
Meinkoth, J. H. and Kocan, A. A. (2005). Feline cytauxzoonosis. Veterinary Clinics of North America: Small Animal Practice 35, 89101.CrossRefGoogle ScholarPubMed
Meinkoth, J., Kocan, A. A., Whitworth, L., Murphy, G., Fox, J. C. and Woods, J. P. (2000). Cats surviving natural infection with Cytauxzoon felis: 18 cases (1997–1998). Journal of Veterinary Internal Medicine 14, 521525.Google Scholar
Nietfeld, J. C. and Pollock, C. (2002). Fatal cytauxzoonosis in a free-ranging bobcat (Lynx rufus). Journal of Wildlife Diseases 38, 607610.CrossRefGoogle Scholar
Nowell, K. and Jackson, P. (1996). Wild Cats: Status Survey and Conservation Action Plan. IUCN, Gland, Switzerland.Google Scholar
Palomares, F., Rodríguez, A., Laffitte, R. and Delibes, M. (1991). The status and distribution of the Iberian lynx Felis pardina (Temminck) in Coto Doñana area, SW Spain. Biological Conservation 57, 159169.Google Scholar
Pérez, J. M. and Palma, R. L. (2001). A new species of Felicola (Phthiraptera: Trichodectidae) from the endangered Iberian lynx: another reason to ensure its survival. Biodiversity and Conservation 10, 929937.CrossRefGoogle Scholar
Reichard, M. V., Van den Bussche, R. A., Meinkoth, J. H., Hoover, J. P. and Kocan, A. A. (2005). A new species of Cytauxzoon from Pallas' cats caught in Mongolia and comments on the systematics and taxonomy of piroplasmids. Journal of Parasitology 91, 420426.CrossRefGoogle ScholarPubMed
Rodríguez, A. and Delibes, M. (2002). Internal structure and patterns of contraction in the geographic range of the Iberian lynx. Ecography 25, 314328.CrossRefGoogle Scholar
Rotstein, D. S., Taylor, S. K., Harvey, J. W. and Bean, J. (1999). Hematologic effects of cytauxzoonosis in Florida panthers and Texas cougars in Florida. Journal of Wildlife Diseases 35, 613617.CrossRefGoogle ScholarPubMed
Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Scott, M. E. (1988). The impact of infectious disease on animal populations: implications for conservation biology. Conservation Biology 2, 4065.CrossRefGoogle Scholar
Smith, K. F., Sax, D. F. and Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology 20, 13491357.CrossRefGoogle ScholarPubMed
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Thorne, E. T. and Williams, E. S. (1988). Disease and endangered species: the black-footed ferret as a recent example. Conservation Biology 2, 6674.Google Scholar
Yabsley, M. J., Murphy, S. M. and Cunningham, M. W. (2006). Molecular detection and characterization of Cytauxzoon felis and a Babesia species in cougars from Florida. Journal of Wildlife Diseases 42, 366374.CrossRefGoogle Scholar