Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T11:13:21.208Z Has data issue: false hasContentIssue false

Prediction of prevalence from mean abundance via a simple epidemiological model in mesostigmate mites from two geographical regions

Published online by Cambridge University Press:  14 April 2010

B. R. KRASNOV*
Affiliation:
Mitrani Department of Desert Ecology, Institute for Dryland Environmental Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
N. P. KORALLO-VINARSKAYA
Affiliation:
Laboratory of Arthropod-Borne Viral Infections, Omsk Research Institute of Natural Foci Infections, Mira Street 7, 644080 Omsk, Russia
M. V. VINARSKI
Affiliation:
Department of Zoology and Physiology, Faculty of Chemistry and Biology, Omsk State Pedagogical University, Tukhachevskogo Embankment 14, 644099 Omsk, Russia
M. LARESCHI
Affiliation:
Center for Parasitological Studies and Vectors, National Research Council of Argentina and School of Natural Sciences and Museum of La Plata National University, Calle 2 N 584, 1900 La Plata, Argentina
*
*Corresponding author: Mitrani Department of Desert Ecology, Institute for Dryland Environmental Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel. Tel: +972 8 6596841. Fax: +972 8 6596772. E-mail: [email protected]

Summary

We analysed data on the abundance and distribution of 26 species of mesostigmate mites with different feeding habits collected from bodies of small mammalian hosts in 2 geographical regions (West Siberia and Argentina). We tested whether prevalence of a mite can be reliably predicted from a simple epidemiological model that takes into account mean abundance and its variance. We theorized that the difference between prevalence predicted from the model and observed prevalence would be smallest in obligatory haematophagous mites, intermediate in facultatively haematophagous mites and greatest in non-haematophagous mites. We also theorized that prevalence of mites from the region with sharp seasonality (Siberia) would be predicted accurately only if host number would be taken into account. We found that the success of a simple epidemiological model to predict prevalence in mites was similar to that reported earlier for other ectoparasitic arthropods. Surprisingly, the model predicted prevalence of obligatory exclusively haematophagous mites less successfully than that of mites with other feeding habits. No difference in the model performance between mites occurring in the 2 geographical regions were found independent of whether the model took the number of hosts into account.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, R. M. and May, R. M. (1985). Helminth infections of humans: mathematical models, population dynamics and control. Advances in Parasitology 24, 1101.CrossRefGoogle Scholar
Balashov, Y. S. (1982). Parasite-Host Relationships between Arthropods and Terrestrial Vertebrates. Nauka, Leningrad, USSR (in Russian).Google Scholar
Balashov, Y. S. (1999). Evolution of the haematophagy in insects and ticks. Entomological Review [Entomologicheskoe Obozrenie] 78, 749763 (in Russian).Google Scholar
Balashov, Y. S. (2000). Evolution of the nidicole parasitism in the Insecta and Acarina. Entomological Review [Entomologicheskoe Obozrenie] 79, 925939 (in Russian).Google Scholar
Brown, J. H. (1984). On the relationship between abundance and distribution of species. American Naturalist 124, 255279.CrossRefGoogle Scholar
Dobrotvorsky, A. K. (1992). Distribution and Multi-Annual Dynamics of the Taiga Tick in the Northern Forest-Steppe of Priobie. Ph.D. thesis. Biological Institute, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia (in Russian).Google Scholar
Elliot, J. M. (1977). Some Methods for Statistical Analysis of Samples of Benthic Invertebrates, 2 Edn. Freshwater Biological Association Sceintific Publications, No. 25, Titus Wilson and Son, Ambleside, UK.Google Scholar
Hanski, I., Kouki, J. and Halkka, A. (1993). Three explanations of the positive relationship between distribution and abundance of species. In Species Diversity in Ecological Communities: Historical and Geographical Perspectives (ed. Ricklefs, R. E. and Schluter, D.), pp. 108116. University of Chicago Press, Chicago, IL, USA.Google Scholar
Higgins, J. P. T. and Thompson, S. G. (2002). Quanifying heterogeneity in a meta-analysis. Statistics in Medicine 21, 15391558.CrossRefGoogle ScholarPubMed
Higgins, J. P. T., Thompson, S. G., Deeks, J. J. and Altman, D. G. (2003). Measuring inconsistency in meta-analysis. British Medical Journal 327, 557560.CrossRefGoogle Scholar
Gaston, K. J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Gregory, R. D. and Woolhouse, M. E. J. (1993). Quantification of parasite aggregation – a simulation study. Acta Tropica 54, 131139.CrossRefGoogle ScholarPubMed
Korallo, N. P. (2009). Host-parasite relationships in gamasid mites of the gnus Hirstionyssus (Acari: Parasitiformes: Gamasina) in the south of the West Siberian Plain. Contemporary Problems of Ecology 2, 188192.CrossRefGoogle Scholar
Krantz, G. W. (1978). A Manual of Acarology, 2nd Edn. Oregon State University Book Stores, Corvallis, OR, USA.Google Scholar
Krasnov, B. R., Khokhlova, I. S. and Shenbrot, G. I. (2002). The effect of host density on ectoparasite distribution: an example with a desert rodent parasitized by fleas. Ecology 83, 164175.CrossRefGoogle Scholar
Krasnov, B. R., Morand, S., Khokhlova, I. S., Shenbrot, G. I. and Hawlena, H. (2005 a). Abundance and distribution of fleas on desert rodents: linking Taylor's power law to ecological specialization and epidemiology. Parasitology 131, 825837.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Stanko, M., Miklisova, D. and Morand, S. (2005 b). Distribution of fleas (Siphonaptera) among small mammals: mean abundance predicts prevalence via simple epidemiological model. International Journal for Parasitology 35, 10971101.CrossRefGoogle ScholarPubMed
Lareschi, M. (2000). Estudio de la Fauna Ectoparásita (Acari, Phthiraptera y Siphonaptera) de Roedores Sigmodontinos (Rodentia: Muridae) de Punta Lara, Provincia de Buenos Aires. Ph.D. thesis, Universidad Nacional de La Plata, La Plata, Argentina.Google Scholar
Lareschi, M. (2004). Ectoparásitos asociados a machos y hembras de Oxymycterus rufus (Rodentia: Muridae). Estudio comparativo en la Selva Marginal del río de La Plata, Argentina. Revista de la Sociedad Entomológica Argentina 63, 3944.Google Scholar
Lareschi, M. (2006). Seasonal occurrence of ectoparasites associated with the water rat Scapteromys aquaticus (Muridae, Sigmodontinae) from Punta Lara, Argentina. In Acarology XI: Proceedings of the International Congress (ed. Morales-Malacara, J. B., Behan-Pelletier, V., Ueckermann, E., Pérez, T. M., Estrada, E., Gispert, C. and Badii, M.), pp. 3744. Instituto de Biología, UNAM, Facultad de Ciencias, UNAM and Sociedad Latinoamericana de Acarología, México.Google Scholar
Lareschi, M., Notarnicola, J., Navone, N. and Linardi, P. M. (2003). Arthropod and filarioid parasites associated with wild rodents in the northeast marshes of Buenos Aires, Argentina. Memórias do Instituto Oswaldo Cruz 98, 673677.CrossRefGoogle ScholarPubMed
Lareschi, M., Notarnicola, J., Nava, S. and Navone, G. (2007). Parasite community (arthropods and filarioids) associated with wild rodents from the marshes of La Plata River, Argentina. Comparative Parasitology 74, 141147.CrossRefGoogle Scholar
Lopez, J. E. (2005). Parasite prevalence and the size of host populations: an experimental test. Journal of Parasitology 91, 3237.CrossRefGoogle ScholarPubMed
Mathhee, S. and Krasnov, B. R. (2009). Searching for mechanisms of generality in the patterns of parasite abundance and distribution: ectoparasites of a South African rodent, Rhabdomys pumilio. International Journal for Parasitology 39, 781788.CrossRefGoogle Scholar
Maurer, V. and Baumgärtner, J. (1992). Temperature influence on life table statistics of the chicken mite Dermanyssus gallinae (Acari: Dermanyssidae). Experimental and Applied Acarology 15, 2740.CrossRefGoogle ScholarPubMed
Møller, A. (1990 a). Effects of parasitism by a haematophagous mite on reproduction in the barn swallow. Ecology 71, 23452357.CrossRefGoogle Scholar
Møller, A. (1990 b). Effects of an haematophagous mite on the barn swallow (Hirundo rustica): a test of the Hamilton and Zuk hypothesis. Evolution 44, 771784.Google ScholarPubMed
Morand, S. and Guégan, J.-F. (2000). Distribution and abundance of parasite nematodes: ecological specialization, phylogenetic constraints or simply epidemiology? Oikos 88, 563573.CrossRefGoogle Scholar
Morand, S. and Krasnov, B. R. (2008). Why apply ecological laws to epidemiology? Trends in Parasitology 24, 304309.CrossRefGoogle ScholarPubMed
Morrone, J. J. (2001). Biogeografía de América Latina y el Caribe. Manuales y Tesis Sociedad Entomológica Aragonesa 3, 1148.Google Scholar
O'Connor, R. J. (1987). Organization of avian assemblages – the influence of intraspecific habitat dynamics. In Organization of Communities: Past and Present (ed. Gee, J. H. R. and Giller, P. S), pp. 163183. Blackwell Scientific, Oxford, UK.Google Scholar
Perry, J. N. and Taylor, L. R. (1986). Stability of real interacting populations in space and time: implications, alternatives and negative binomial k c. Journal of Animal Ecology 55, 10531068.CrossRefGoogle Scholar
Radovsky, F. J. (1985). Evolution of mammalian mesostigmatid mites. In Coevolution of Parasitic Arthropods and Mammals (ed. Kim, K. C.), pp. 441504. John Wiley & Sons, New York, NY, USA.Google Scholar
Shaw, D. J. and Dobson, A. P. (1995). Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111S127.CrossRefGoogle ScholarPubMed
Simkova, A., Kadlec, D., Gelnar, M. and Morand, S. (2002). Abundance-prevalence relationship of gill congeneric ectoparasites: testing the core satellite hypothesis and ecological specialization. Parasitology Research 88, 682686.Google Scholar
Sorci, G., Defraipont, M. and Clobert, J. (1997). Host density and ectoparasite avoidance in the common lizard (Lacerta vivipara). Oecologia 11, 183188.CrossRefGoogle Scholar
Stanko, M., Krasnov, B. R., Miklisova, D. and Morand, S. (2007). Simple epidemiological model predicts the relationships between prevalence and abundance in ixodid ticks. Parasitology 134, 5968.CrossRefGoogle ScholarPubMed
Tagiltsev, A. A. (1957). On the relationships between parasitic and nidicolous Acari. Medical Parasitology and Parasitic Diseases [Meditsinskaya parazitologiya and parazitarnyye bolezni] 26, 440447 (in Russian).Google Scholar
Tagiltsev, A. A. (1967). Ecology of gamasid mites in the nests of Dyromys nitedula Pallas. Parazitologiya 1, 507511 (in Russian).Google Scholar
Tagiltsev, A. A., Tarasevich, L. N., Bogdanov, I. I. and Yakimenko, V. V. (1990). The Study of Arthropods of the Refugial Compexes in the Natural Foci of the Transmissive Viral Infections: A Guide. Tomsk State University Press, Tomsk, USSR (in Russian).Google Scholar
Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, London 189, 732735.CrossRefGoogle Scholar
Wilson, K., Bjørnstad, O. N., Dobson, A. P., Merler, S., Poglaen, G., Randolph, S. E., Read, A. F. and Skorping, A. (2001). Heterogeneities in macroparasite infections: Patterns and processes. In The Ecology of Wildlife Diseases (ed. Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. and Dobson, A. P.), pp. 6–44. Oxford University Press, Oxford, UK.Google Scholar
Zemskaya, A. A. (1969). Types of parasitism of gamasid mites. Medical Parasitology and Parasitic Diseases [Meditsinskaya parazitologiya and parazitarnyye bolezni] 38, 393405 (in Russian).Google Scholar
Zemskaya, A. A. (1973). Parasitic Gamasid Mites and their Medical Importance. Meditsina, Moscow, USSR (in Russian).Google Scholar