Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T11:13:28.221Z Has data issue: false hasContentIssue false

Predator vs aliens: bacteria interactions with Acanthamoeba

Published online by Cambridge University Press:  05 February 2014

NAVEED AHMED KHAN*
Affiliation:
Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
RUQAIYYAH SIDDIQUI
Affiliation:
Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
*
* Corresponding author: Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan. E-mail: [email protected]

Summary

By interactions with other microbes, free-living amoebae play a significant role in microbiology, environmental biology, physiology, cellular interactions, ecology and evolution. Here, we discuss astonishing interactions of bacteria and amoebae, in the light of evolution and functional aspects impacting human health. In favourable environmental conditions, the interaction of Acanthamoeba with non-virulent bacteria results in lysis of the bacteria. However, the interaction with weak-virulent bacteria results in a symbiotic relationship or amoebal lysis may occur. The microbial survival of amoebae in harsh environments, ability to interact with bacteria, and their ability to aid transmission to susceptible hosts is of great concern to human, animal and ecosystem health.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alsam, S., Jeong, S. R., Sissons, J., Dudley, R., Kim, K. S. and Khan, N. A. (2006). Escherichia coli interactions with Acanthamoeba: a symbiosis with environmental and clinical implications. Journal of Medical Microbiology 55, 689694.Google Scholar
Asadulghani, M., Ogura, Y., Ooka, T., Itoh, T., Sawaguchi, A., Iguchi, A., Nakayama, K. and Hayashi, T. (2009). The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathogens 5, e1000408.CrossRefGoogle ScholarPubMed
Avery, S. V., Harwood, J. L. and Lloyd, D. (1995). Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow cytometry. Applied and Environmental Microbiology 61, 11241132.Google Scholar
Barker, J. and Brown, M. (1994). Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 140, 12531259.Google Scholar
Barker, J., Scaife, H. and Brown, M. R. W. (1995). Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila . Antimicrobial Agents and Chemotherapy 39, 26842688.Google Scholar
Bowers, B. and Olszewski, T. E. (1983). Acanthamoeba discriminates internally between digestible and indigestible particles. Journal of Cell Biology 97, 317.Google Scholar
Brock, D. A., Douglas, T. E., Queller, D. C. and Strassmann, J. E. (2011). Primitive agriculture in a social amoeba. Nature 469, 393396.Google Scholar
Centers for Disease Control CDC (1991). Nosocomial transmission of multidrug-resistant tuberculosis among HIV-infected persons – Florida and New York, 1988–1991. Morbidity and Mortality Weekly Report 40, 585591.Google Scholar
Centers for Disease Control and Prevention CDC (2006). Emergence of Mycobacterium tuberculosis tuberculosis with extensive resistance to second-line drugs – worldwide, 2000–2004. Morbidity and Mortality Weekly Report 55, 301305.Google Scholar
Cirillo, J. D., Falkow, S., Tompkins, L. S. and Bermudez, L. E. (1997). Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infection and Immunity 65, 37593767.Google Scholar
Clarke, M., Lohan, A. J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., Schilde, C., Kianianmomeni, A., Bürglin, T. R., Frech, C., Turcotte, B., Kopec, K. O., Synnott, J. M., Choo, C., Paponov, I., Finkler, A., Heng Tan, C. S., Hutchins, A. P., Weinmeier, T., Rattei, T., Chu, J. S., Gimenez, G., Irimia, M., Rigden, D. J., Fitzpatrick, D. A., Lorenzo-Morales, J., Bateman, A., Chiu, C. H., Tang, P., Hegemann, P., Fromm, H., Raoult, D., Greub, G., Miranda-Saavedra, D., Chen, N., Nash, P., Ginger, M. L., Horn, M., Schaap, P., Caler, L. and Loftus, B. J. (2013). Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology 14, R11.Google Scholar
Colson, P., de Lamballerie, X., Fournous, G. and Raoult, D. (2012). Reclassification of giant viruses composing a fourth domain of life in the new order Megavirales. Intervirology 55, 321332.Google Scholar
Dawkins, R. (1976). The Selfish Gene. Oxford University Press, Oxford, UK.Google Scholar
Dey, R., Hoffman, P. S. and Glomski, I. J. (2012). Germination and amplification of anthrax spores by soil-dwelling amoebas. Applied and Environmental Microbiology 78, 80758081.Google Scholar
Drozanski, W. (1956). Fatal bacterial infection in soil amoebae. Acta Microbiologica Polonica 5, 315317.Google Scholar
Eriksen, K. R. and Erichsen, I. (1963). Clinical occurrence of methicillin-resistant strains of Staphylococcus aureus . Ugeskr Laeger 125, 12341240.Google Scholar
Essig, A., Heinemann, M., Simnacher, U. and Marre, R. (1997). Infection of Acanthamoeba castellanii by Chlamydia pneumoniae . Applied and Environmental Microbiology 63, 13961399.Google Scholar
Greub, G. and Raoult, D. (2004). Microorganisms resistant to free-living amoebae. Clinical Microbiology Reviews 17, 413433.Google Scholar
Hamilton, W. D. (1964). The genetical evolution of social behaviour, I & II. Journal of Theoretical Biology 7, 152.Google Scholar
Humann, J. and Lenz, L. L. (2009). Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection. Journal of Innate Immunology 1, 8897.Google Scholar
Iqbal, J., Siddiqui, R. and Khan, N. A. (2013). Acanthamoeba can propagate on thermophilic Sulfolobus spp. Parasitology Research 112, 879881.Google Scholar
Kagan, B. M., Martin, E. R. and Stewart, G. T. (1964). L form induction of naturally occurring methicillin-resistant strains of Staphylococcus aureus . Nature 203, 10311033.CrossRefGoogle ScholarPubMed
Khan, N. A. (2009). Acanthamoeba: Biology and Pathogenesis. Caister Academic Press, Wymondham, UK.Google Scholar
King, C., Shotts, E., Wooley, R. and Porter, K. (1988). Survival of coliforms and bacterial pathogens within protozoa during chlorination. Applied and Environmental Microbiology 54, 30233033.Google Scholar
Korn, E. D. and Weisman, R. A. (1967). Phagocytosis of latex beads by Acanthamoeba. II. Electron microscopic study of the initial events. Journal of Cell Biology 34, 219227.Google Scholar
Krishna-Prasad, B. N. and Gupta, S. K. (1978). Preliminary report on engulfment and retention of mycobacteria by trophozoites of axenically grown Acanthamoeba castellanii Douglas. Current Science 47, 245247.Google Scholar
Landers, P., Kerr, K. G., Rowbotham, T. J., Tipper, J. L., Keig, P. M., Ingham, E. and Denton, M. (2000). Survival and growth of Burkholderia cepacia within the free-living amoeba Acanthamoeba polyphaga . European Journal of Clinical Microbiology and Infectious Diseases 19, 121123.Google Scholar
Larkin, D. F. and Easty, D. L. (1990). External eye flora as nutrient source for Acanthamoeba . Graefe's Archives for Clinical and Experimental Ophthalmology 228, 458460.Google Scholar
Marolda, C. L., Hauroder, B., John, M. A., Michel, R. and Valvano, M. A. (1999). Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145, 15091517.Google Scholar
Maynard, S. J. (1964). Group selection and kin selection. Nature 201, 11451147.Google Scholar
Molmeret, M., Horn, M., Wagner, M., Santic, M. and Kwaik, Y. A. (2005). Amoebae as training grounds for intracellular bacterial pathogens. Applied and Environmental Microbiology 71, 2028.Google Scholar
Proca-Ciobanu, M., Lupascu, G. H., Petrovici, A. and Ionescu, M. D. (1975). Electron microscopic study of a pathogenic Acanthamoeba castellani strain: the presence of bacterial endosymbionts. International Journal for Parasitology 5, 4956.Google Scholar
Rodriguez-Zaragoza, S. (1994). Ecology of free-living amoebae. Critical Reviews in Microbiology 20, 225241.Google Scholar
Rønn, R., McCaig, A. E., Griffiths, B. S. and Prosser, J. I. (2002). Impact of protozoan grazing on bacterial community structure in soil microcosms. Applied and Environmental Microbiology 68, 60946105.Google Scholar
Rosenberg, K., Bertaux, J., Krome, K., Hartmann, A., Scheu, S. and Bonkowski, M. (2009). Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana . ISME Journal 3, 675684.Google Scholar
Rowbotham, T. J. (1980). Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. Journal of Clinical Pathology 33, 11791183.Google Scholar
Susa, M., Hacker, J. and Marre, R. (1996). De novo synthesis of Legionella pneumophila antigens during intracellular growth in phagocytic cells. Infection and Immunity 64, 16791684.Google Scholar
Thomas, V. and Greub, G. (2010). Amoeba/amoebal symbiont genetic transfers: lessons from giant virus neighbours. Intervirology 53, 254267.Google Scholar
Whitaker, J. W., McConkey, G. A. and Westhead, D. R. (2009). The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biology 10, R36.Google Scholar
Williams, G. C. (1966). Adaptation and Natural Selection. Princeton University Press, Princeton, NJ, USA.Google Scholar
Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K. and Walsh, T. R. (2009). Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial Agents and Chemotherapy 53, 50465054.Google Scholar