Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T09:23:02.906Z Has data issue: false hasContentIssue false

The potential signalling pathways which regulate surface changes induced by phytohormones in the potato cyst nematode (Globodera rostochiensis)

Published online by Cambridge University Press:  06 May 2004

A. AKHKHA
Affiliation:
Davidson Building, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow Gl2 8QQ, UK
R. CURTIS
Affiliation:
Nematode Interactions Unit, Rothamsted-Research, Harpenden, Hertfordshire AL5 2JQ, UK
M. KENNEDY
Affiliation:
Graham Kerr Building, Division of Environmental and Evolutionary Biology, University of Glasgow, Glasgow Gl2 8QQ, UK
J. KUSEL
Affiliation:
Davidson Building, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow Gl2 8QQ, UK

Abstract

It has been demonstrated that the surface lipophilicity of the plant-parasitic nematode Globodera rostochiensis decreases when infective larvae are exposed to the phytohormones indole-3-acetic acid (auxin) or kinetin (cytokinin). In the present study, it was shown that inhibition of phospholipase C (PLC) or phosphatidylinositol 3 kinase (PI3-kinase) reversed the effect of phytohormones on surface lipophilicity. The signalling pathway(s) involved in surface modification were investigated using ‘caged’ signalling molecules and stimulators or inhibitors of different signalling enzymes. Photolysis of the ‘caged’ signalling molecules, NPE-caged Ins 1,4,5-P3, NITR-5/AM or caged-cAMP to liberate IP3, Ca2+ or cAMP respectively, decreased the surface lipophilicity. Activation of adenylate cyclase also decreased the surface lipophilicity. In contrast, inhibition of PI3-kinase using Wortmannin, LY-294002 or Quercetin, and inhibition of PLC using U-73122 all increased the surface lipophilicity. Two possible signalling pathways involved in phytohormone-induced surface modification are proposed.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AKHKHA, A., KUSEL, J., KENNEDY, M. & CURTIS, R. (2002). The effects of phytohormones on the surfaces of plant-parasitic nematodes. Parasitology 125, 165175.CrossRefGoogle Scholar
ATKINSON, H. J. & FOWLER, M. (1990). Changes in polyphosphoinositide metabolism in Globodera rostochiensis following stimulation to hatch by potato root diffusate. Nematologica 36, 417423.CrossRefGoogle Scholar
BERRIDGE, M. J. (1993). Inositol triphosphate and calcium signalling. Nature, London 361, 315325.CrossRefGoogle Scholar
BERRIDGE, M. J., LIPP, P. & BOOTMAN, D. (2000). The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology 1, 1121.CrossRefGoogle Scholar
BONSER, R. W., THOMPSON, N. T., RANDALL, R. W., TATESON, J. E., SPACEY, G. D., HODSON, H. F. & GARLAND, L. G. (1991). Demethoxyviridin and Wortmannin block phospholipase C and D activation in the human neutrophil. British Journal of Pharmacology 103, 12371241.CrossRefGoogle Scholar
CROSS, M. J., STEWART, A., HODGKIN, M. N., KERR, D. J. & WAKELAM, J. O. (1995). Wortmannin and its structural analogue Demethoxyviridin inhibit stimulated phospholipase A2 activity in Swiss 3T3 cells. Journal of Biological Chemistry 270, 2535225355.CrossRefGoogle Scholar
McCRAY, J. A. & TRENTHAM, D. R. (1989). Properties and uses of photoreactive caged compounds. Annual Review of Biophysics and Physical Chemistry 18, 239270.CrossRefGoogle Scholar
MODHA, J., KUSEL J. R. & KENNEDY, M. W. (1995). A role for second messengers in the control of activation-associated modification of the surface of Trichinella spiralis infective larvae. Molecular and Biochemical Parasitology 72, 141148.CrossRefGoogle Scholar
MORRIS, J. Z., TISSENBAUM, H. A. & RUVKUN, G. (1996). A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature, London 382, 536538.CrossRefGoogle Scholar
NAKANISHI, H., BREWER, K. A. & EXTON, J. H. (1993). Activation of the zeta isoform of protein kinase C by phosphatidyl inositol 3,4,5 trisphosphate. Journal of Biological Chemistry 268, 1316.Google Scholar
PALMER, R. H., DEKKER, L. V., WOSCHOLSKI, R., LeGOOD, J. A., GIGG, R. & PARKER, P. J. (1995). Activation of PRK1 by phosphatidylinositol 4,5 bisphosphate and phosphatidyl 3,4,5 tris phosphate. Journal of Biological Chemistry 270, 2241222416.CrossRefGoogle Scholar
PROUDFOOT, L., KUSEL J. R., SMITH, H. V. & KENNEDY, M. W. (1991). Biophysical properties of the nematode surface. In Parasitic Nematodes-Antigens, Membranes and Genes (ed. Kennedy, M. W.), pp. 126. Taylor Francis, London.
PROUDFOOT, L., KUSEL J. R., SMITH, H. V., HARNETT, W., WORMS, M. J. A. & KENNEDY, M. W. (1993 a). Rapid changes in the surface of parasitic nematodes during transition from pre- to post-parasitic forms. Parasitology 107, 107117.Google Scholar
PROUDFOOT, L., KUSEL, J. R., SMITH, H. V. & KENNEDY, M. W. (1993 b). External stimuli and intracellular signalling in the modification of the nematode surface during transition to mammalian host environment. Parasitology 107, 559566.Google Scholar
SHEPHERD, P. R., NAVÉ, B. T. & O'RAHILLY, S. (1996). The role of phosphoinisitide 3-kinase in insulin signaling. Journal of Molecular Endocrinology 17, 175184.CrossRefGoogle Scholar
TOKER, A. & CANTLEY, L. C. (1997). Signalling through the lipid products of phosphoinositide 3-OH-kinase. Nature, London 387, 673676.CrossRefGoogle Scholar
TOKER, A., MYER, M., REDDY, K. K., FLACK, J. R., ANEDA, R., ANEDA, S., PARRA, A., BURNS, D. J., BALLAS, L. M. & CANTLEY, L. C. (1994). Activation of protein kinase C family members by the novel phosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. Journal of Biological Chemistry 269, 3235832367.Google Scholar