Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T07:02:58.880Z Has data issue: false hasContentIssue false

Polymorphism in Plasmodium vivax MSA1 gene – the result of intragenic recombinations?

Published online by Cambridge University Press:  06 April 2009

Q. Cheng
Affiliation:
Queensland Institute of Medical Research, Brisbane, Australia
A. Stowers
Affiliation:
Queensland Institute of Medical Research, Brisbane, Australia
T.-Y. Huang
Affiliation:
Queensland Institute of Medical Research, Brisbane, Australia
D. Bustos
Affiliation:
Research Institute for Tropical Medicine, Metro Manila, Philippines
Y.-M. Huang
Affiliation:
Guang Xi Institute of Parasitic Diseases Control, Nanning, GuangXi, People's Republic of China
C. Rzepczyk
Affiliation:
Queensland Institute of Medical Research, Brisbane, Australia
A. Saul
Affiliation:
Queensland Institute of Medical Research, Brisbane, Australia

Summary

The diversity in a 925 bp portion of the Plasmodium vivax MSA1 gene in isolates from the Philippines, China, the Solomon Islands and Papua New Guinea was investigated. A total of 74 base pair changes was found in the amplified fragment from 18 isolates. Most of these changes were single or double base pair substitutions. In several regions, these point changes were tightly linked with one set always present or always absent in the different isolates. Seven such blocks were identified. These blocks were present in different combinations in the different isolates indicating that extensive intragenic recombination has occurred.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayala, F. J. & Fitch, W. M. (1992). Phylogeny of Plasmodium falciparum. Parasitology Today 8, 74–5.CrossRefGoogle ScholarPubMed
Conway, D. J. & McBride, J. S. (1991). Population genetics of Plasmodium falciparum within a malaria hyperendemic area. Parasitology 103, 716.CrossRefGoogle ScholarPubMed
Conway, D. J., Greenwood, B. M. & McBride, J. S. (1992). Longitudinal study of Plasmodium falciparum polymorphic antigens in a malaria-endemic population. Infection and Immunity 60, 1122–7.CrossRefGoogle Scholar
Del Portillo, H. A., Longacre, S., Khouri, E. & David, p. H. (1991). Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proceedings of the National Academy of Sciences, USA 88, 4030–4.CrossRefGoogle ScholarPubMed
Gibson, H. L., Tucker, J. E., Kaslow, D. C., Krettli, A. U., Collins, W. E., Kiefer, M. C., Bathurst, I. C. & Barr, P. J. (1992). Structure and expression of the gene for P.v200, a major blood-stage surface antigen of Plasmodium vivax. Molecular and Biochemical Parasitology 50, 325–34.CrossRefGoogle Scholar
Holder, A. A. & Freeman, R. R. (1982). Biosynthesis and processing of a Plasmodium falciparum schizont antigen recognized by immune serum and a monoclonal antibody. Journal of Experimental Medicine 156, 1528–38.CrossRefGoogle ScholarPubMed
Kemp, D. J., Cowman, A. F. & Walliker, D. (1990). Genetic diversity in Plasmodium falciparum. Advances in Parasitology 29, 75149.CrossRefGoogle ScholarPubMed
Limpaiboon, T., Shirley, M. W., Kemp, D. J. & Saul, A. (1991). 7H8/6, a multicopy DNA probe for distinguishing isolates of Plasmodium falciparum. Molecular and Biochemical Parasitology 47, 197206.CrossRefGoogle ScholarPubMed
Lockyer, M. J., Marsh, K. & Newbold, C. I. (1989). Wild isolates of Plasmodium falciparum show extensive polymorphism in T cell epitopes of the circumsporozoite protein. Molecular and Biochemical Parasitology 37, 275–80.CrossRefGoogle Scholar
McCutchan, T. F., Lal, A. A., Rosario, V. D. & Waters, A. P. (1992). Two types of sequence polymorphism in the circumsporozoite gene of Plasmodium falciparum. Molecular and Biochemical Parasitology 50, 3746.CrossRefGoogle ScholarPubMed
Marshall, V. M., Coppel, R. L., Anders, R. F. & Kemp, D. J. (1992). Two novel alleles within subfamilies of the merozoite surface antigen 2 (MSA-2) of Plasmodium falciparum. Molecular and Biochemical Parasitology 50, 181–4.CrossRefGoogle ScholarPubMed
Peterson, M. G., Coppel, R. L., McIntyre, P., Langford, C. J., Woodrow, G., Brown, G. V., Anders, R. F. & Kemp, D. J. (1988). Variation in the precursor to the major merozoite surface antigens of Plasmodium falciparum. Molecular and Biochemical Parasitology 27, 291302.CrossRefGoogle Scholar
Tanabe, K., Mackay, M., Goman, M. & Scaife, J. G. (1987). Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. Journal of Molecular Biology 196, 273–87.CrossRefGoogle Scholar
Tibayrenc, M., Kjellberg, F. & Ayala, J. F. (1990). A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proceedings of the National Academy of Sciences, USA 87, 2414–18.CrossRefGoogle ScholarPubMed
Walker-Jonah, A., Dolan, S. A., Gwadz, R. W., Panton, L. j. & Wellems, T. E. (1992). An RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic cross. Molecular and Biochemical Parasitology 51, 313–20.CrossRefGoogle Scholar
Walliker, D. (1989). Implications of genetic exchange in the study of protozoan infections. Parasitology 99, S48S58.CrossRefGoogle Scholar
Waters, A. P. & McCutchan, T. F. (1992). Plasmodium falciparum: birds to humans. Parasitology Today 8, 91–2.CrossRefGoogle ScholarPubMed