Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T01:27:44.712Z Has data issue: false hasContentIssue false

Physalins B and F, seco-steroids isolated from Physalis angulata L., strongly inhibit proliferation, ultrastructure and infectivity of Trypanosoma cruzi

Published online by Cambridge University Press:  04 September 2013

CÁSSIO S. MEIRA
Affiliation:
Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, CEP: 40296-710, Brazil
ELISALVA T. GUIMARÃES
Affiliation:
Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, CEP: 40296-710, Brazil Departamento de Ciências da Vida, Universidade do Estado da Bahia, Rua Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil
TANIRA M. BASTOS
Affiliation:
Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, CEP: 40296-710, Brazil
DIOGO R. M. MOREIRA
Affiliation:
Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, CEP: 40296-710, Brazil
THEREZINHA C. B. TOMASSINI
Affiliation:
Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos (Farmanguinhos), Avenida Comandante Guaranys, Jacarepaguá, Rio de Janeiro, RJ, CEP: 22775-903, Brazil
IVONE M. RIBEIRO
Affiliation:
Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos (Farmanguinhos), Avenida Comandante Guaranys, Jacarepaguá, Rio de Janeiro, RJ, CEP: 22775-903, Brazil
RICARDO R. DOS SANTOS
Affiliation:
Hospital São Rafael, Centro de Biotecnologia e Terapia Celular, Avenida São Rafael, São Marcos, Salvador, Bahia, CEP: 41253-190, Brazil
MILENA B. P. SOARES*
Affiliation:
Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, CEP: 40296-710, Brazil Hospital São Rafael, Centro de Biotecnologia e Terapia Celular, Avenida São Rafael, São Marcos, Salvador, Bahia, CEP: 41253-190, Brazil
*
*Corresponding author. Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz. Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil. E-mail: [email protected]

Summary

We previously observed that physalins have immunomodulatory properties, as well as antileishmanial and antiplasmodial activities. Here, we investigated the anti-Trypanosoma cruzi activity of physalins B, D, F and G. We found that physalins B and F were the most potent compounds against trypomastigote and epimastigote forms of T. cruzi. Electron microscopy of trypomastigotes incubated with physalin B showed disruption of kinetoplast, alterations in Golgi apparatus and endoplasmic reticulum, followed by the formation of myelin-like figures, which were stained with MDC to confirm their autophagic vacuole identity. Physalin B-mediated alteration in Golgi apparatus was likely due to T. cruzi protease perturbation; however physalins did not inhibit activity of the trypanosomal protease cruzain. Flow cytometry examination showed that cell death is mainly caused by necrosis. Treatment with physalins reduced the invasion process, as well as intracellular parasite development in macrophage cell culture, with a potency similar to benznidazole. We observed that a combination of physalins and benznidazole has a greater anti-T. cruzi activity than when compounds were used alone. These results indicate that physalins, specifically B and F, are potent and selective trypanocidal agents. They cause structural alterations and induce autophagy, which ultimately lead to parasite cell death by a necrotic process.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brustolim, D., Vasconcelos, J. F., Freitas, L. A., Teixeira, M. M., Farias, M. T., Ribeiro, Y. M., Tomassini, T. C. B., Oliveira, G. G., Pontes-de-Carvalho, L. C., Ribeiro-dos-Santos, R. and Soares, M. B. P. (2010). Activity of physalin F in a collagen-induced arthritis model. Journal of Natural Products 73, 132313236. doi: 10.1021/np900691w.CrossRefGoogle Scholar
Castro, D. P., Figueiredo, M. B., Genta, F. A., Ribeiro, I. M., Tomassini, T. C. B., Azambuja, P. and Garcia, E. S. (2009). Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities. Journal of Insect Physiology 55, 532537. doi: 10.1016/j.jinsphys.2009.01.013.CrossRefGoogle ScholarPubMed
Castro, D. P., Moraes, C. S., Gonzalez, M. S., Ribeiro, I. M., Tomassini, T. C., Azambuja, P. and Garcia, E. S. (2012). Physalin B inhibits Trypanosoma cruzi infection in the gut of Rhodnius prolixus by affecting the immune system and microbiota. Journal of Insect Physiology 58, 16201625. doi: 10.1016/j.jinsphys.2012.10.001.CrossRefGoogle ScholarPubMed
Cencig, S., Coltel, N., Truyens, C. and Carlier, Y. (2012). Evaluation of benznidazole treatment combined with nifurtimox, posaconazole or AmBisome® in mice infected with Trypanosoma cruzi strains. International Journal of Antimicrobial Agents 40, 527532. doi: 10.1016/j.ijantimicag.2012.08.002.CrossRefGoogle ScholarPubMed
Chiang, H. C., Jaw, S. M. and Chen, P. M. (1992). Inhibitory effects of physalin B and physalin F on various human leukemia cells in vitro. Anticancer Research 12, 11551162.Google ScholarPubMed
Coura, J. R. and De Castro, S. L. (2002). A critical review on Chagas disease chemotherapy. Memorias Instituto Oswaldo Cruz 97, 324. doi: 10.1590/S0074-02762002000100001.CrossRefGoogle Scholar
Damu, A. G., Kuo, P. C., Su, C. R., Kuo, T. H., Chen, T. H., Bastow, K. F., Lee, K. H. and Wu, T. S. (2007). Isolation, structures, and structure – cytotoxic activity relationships of withanolides and physalins from Physalis angulata. Journal of Natural Products 70, 11461152. doi: 10.1021/np0701374.CrossRefGoogle ScholarPubMed
Duszenko, M., Ginger, M. L., Brennand, A., Gualdrón-López, M., Colombo, M. I., Coombs, G. H., Coppens, I., Jayabalasingham, B., Langsley, G., de Castro, S. L., Menna-Barreto, R., Mottram, J. C., Navarro, M., Rigden, D. J., Romano, P. S., Stoka, V., Turk, B. and Michels, P. A. (2011). Autophagy in protists. Autophagy 7, 127158. doi: 10.4161/auto.7.2.13310.CrossRefGoogle ScholarPubMed
Eakin, A. E., MacGrath, M. E., McKerrow, J. H., Fletterick, R. J. and Craik, C. S. (1993). Production of crystalizable cruzain, the major cysteine protease from Trypanosoma cruzi. Journal of Biological Chemistry 268, 61156118.CrossRefGoogle Scholar
Engel, J. C., Doyle, P. S., Palmer, J., Hsieh, I., Bainton, D. F. and McKerrow, J. H. (1998). Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi. Journal of Cell Science 111, 597606.CrossRefGoogle ScholarPubMed
Goebel, T., Ulmer, D., Projahn, H., Kloeckner, J., Heller, E., Glaser, M., Ponte-Sucre, A., Specht, S., Sarite, S. R., Hoerauf, A., Kaiser, A., Hauber, I., Hauber, J. and Holzgrabe, U. (2008). In search of novel agents for therapy of tropical diseases and human immunodeficiency virus. Journal of Medicinal Chemistry 51, 238250. doi: 10.1021/jm070763y.CrossRefGoogle ScholarPubMed
Guimarães, E. T., Lima, M. S., Santos, L. A., Ribeiro, I. M., Tomassini, T. C. B., Ribeiro dos Santos, R., dos Santos, W. L. and Soares, M. B. P. (2009). Activity of physalins purified form Physalins angulata in vitro and in vivo models of cutaneous leishmaniasis. Journal of Antimicrobial Chemotherapy 64, 8487. doi: 10.1093/jac/dkp170.CrossRefGoogle Scholar
Gupta, S., Wan, X., Zago, M. P., Sellers, V. C., Silva, T. S., Assiah, D., Dhiman, M., Nuñez, S., Petersen, J. R., Vázquez-Chagoyán, J. C., Estrada-Franco, J. G. and Garg, N. J. (2013). Antigenicity and diagnostic potential of vaccine candidates in human Chagas disease. PLOS Neglected Tropical Diseases 7, e2018. doi: 10.1371/journal.pntd.0002018.CrossRefGoogle ScholarPubMed
He, H., Zang, L. H., Feng, Y. S., Wang, J., Liu, W. W., Chen, L. X., Kang, N., Tashiro, S., Onodera, S., Qiu, F. and Ikejima, T. (2013 a). Physalin A induces apoptotic cell death and protective autophagy in HT1080 human fibrosarcoma cells. Journal of Natural Products 76, 880888. doi: 10.1021/np400017k.CrossRefGoogle ScholarPubMed
He, H., Zang, L. H., Feng, Y. S., Chen, L. X., Kang, N., Tashiro, S. I., Onodera, S., Qiu, F. and Ikejima, T. (2013 b). Physalin A induces apoptosis via p53-Noxa-mediated ROS generation, and autophagy plays a protective role against apoptosis through p38-NF-κB survival pathway in A375-S2 cells. Journal of Ethnopharmacology 148, 544555. doi: 10.1016/j.jep.2013.04.051.CrossRefGoogle Scholar
Jacobo-Herrera, N. J., Bremner, P., Marquez, N., Gupta, M. P., Gibbons, S., Muñoz, E. and Heinrich, M. (2006). Physalins from Witheringia solanaceas as modulators of the NF-kappaB cascade. Journal of Natural Products 69, 328331. doi: 10.1021/np050225t.CrossRefGoogle Scholar
Januário, A. H., Filho, E. R., Pietro, R. C., Kashima, S., Sato, D. N. and França, S. C. (2002). Antimycobacterial physalins from Physalis angulata L. (Solanaceae). Phytotherapy Research 16, 445448. doi: 10.1002/ptr.939.CrossRefGoogle ScholarPubMed
Jin, Z., Mashuta, M. S., Stolowich, N. J., Vaisberg, A. J., Stivers, N. S., Bates, P. J., Lewis, W. H. and Hammond, G. B. (2012). Physangulidines A, B, and C: three new antiproliferative withanolides from Physalis angulata L. Organic Letters 14, 12301233. doi: 10.1021/ol203498a.CrossRefGoogle Scholar
Pinto-Dias, J. C. (2006). The treatment of Chagas disease (South American trypanosomiasis). Annals of Internal Medicine 144, 722774.Google ScholarPubMed
Magalhães, H. I., Veras, M. L., Torres, M. R., Alves, A. P., Pessoa, O. D., Silveira, E. R., Costa-Lotufo, L. V., de Moraes, M. O. and Pessoa, C. (2006). In vitro and in vivo antitumor activity of physalins B and D from Physalis angulata. Journal of Pharmacy and Pharmacology 58, 235241. doi: 10.1211/jpp.58.2.0011.CrossRefGoogle Scholar
Maya, J. D., Cassels, B. K., Iturriaga-Vásquez, P., Ferreira, J., Faúndez, M., Galanti, N., Ferreira, A. and Morello, A. (2007). Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 146, 601620. doi: 10.1016/j.cbpa.2006.03.004.CrossRefGoogle ScholarPubMed
Matsuo, A. L., Silva, L. S., Torrecilhas, A. C., Pascoalino, B. S., Ramos, T. C., Rodrigues, E. G., Schenkman, S., Caires, A. C. and Travassos, L. R. (2010). In vitro and in vivo trypanocidal effects of the cyclopalladated compound 7a, a drug candidate for treatment of Chagas’ disease. Antimicrobial Agents and Chemotherapy 54, 33183325. doi: 10.1128/AAC.00323-10.CrossRefGoogle ScholarPubMed
Moncayo, A. and Silveira, A. C. (2009). Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Memorias Instituto Oswaldo Cruz 104, 1730. doi: 10.1590/S0074-02762009000900005.CrossRefGoogle ScholarPubMed
Moreno, M., D´avoça, D. A., Silva, M. N., Galvão, L. M., Macedo, A. M., Chiari, E., Gontijo, E. D. and Zingales, B. (2010). Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease. Memorias Instituto Oswaldo Cruz 105, 918924. doi: 10.1590/S0074-02762010000700014.CrossRefGoogle Scholar
Moton, A., Krishna, G. and Wang, Z. (2009). Tolerability and safety profile of posaconazole: evaluation of 18 controlled studies in healthy volunteers. Journal of Clinical Pharmacy and Therapeutics 34, 301311. doi: 10.1111/j.1365-2710.2009.01055.x.CrossRefGoogle ScholarPubMed
Reyes-Reyes, E. M., Jin, Z., Vaisberg, A. J., Hammond, G. B. and Bates, P. J. (2013). Physangulidine A, a withanolide from Physalis angulata, perturbs the cell cycle and induces cell death by apoptosis in prostate cancer cells. Journal of Natural Products 76, 27. doi: 10.1021/np300457g.CrossRefGoogle ScholarPubMed
, M. S., Menezes, M. N., Krettli, A. U., Ribeiro, I. M., Tomassini, T. C. B., Ribeiro dos Santos, R., de Azevedo, W. F. Jr. and Soares, M. B. P. (2011). Antimalarial activity of physalins B, D, F and G. Journal of Natural Products 74, 22692272. doi: 10.1021/np200260f.CrossRefGoogle Scholar
Sajid, M., Robertson, S. A., Brinen, L. S. and McKerrow, J. H. (2011). Cruzain: the path from target validation to the clinic. Advances in Experimental Medicine and Biology 712, 100115. doi: 10.1007/978-1-4419-8414-2_7.CrossRefGoogle ScholarPubMed
Soares, M. B. P., Bellintani, M. C., Ribeiro, I. M., Tomassini, T. C. B. and Ribeiro dos Santos, R. (2003). Inhibition of macrophage activation and lipopolysaccharide-induced death by seco-steroids purified from Physalis angulata L. European Journal of Pharmacology 459, 107112. doi: 10.1016/S0014-2999(02)02829-7.CrossRefGoogle Scholar
Soares, M. B. P., Brustolin, D., Santos, L. A., Bellintani, M. C., Paiva, F. P., Ribeiro, Y. M., Tomassini, T. C. B. and Ribeiro Dos Santos, R. (2006). Physalins B, F and G, seco-steroids purified from Physalins angulata L., inhibit lymphocyte function and allogenic transplant rejection. International Immunopharmacology 6, 408414. doi: 10.1016/j.intimp.2005.09.007.CrossRefGoogle Scholar
Urbina, J. A. (2010). New insights in Chagas disease treatment. Drugs of the Future 35, 409419. doi: 10.1358/dof.2010.035.05.1484391.CrossRefGoogle Scholar
Urbina, J. A. and Docampo, R. (2003). Specific chemotherapy of Chagas disease: controversies and advances. Trends in Parasitology 19, 495501. doi: 10.1016/j.pt.2003.09.001.CrossRefGoogle ScholarPubMed
Vanier-Santos, M. A. and De Castro, S. L. (2009). Electron microscopy in antiparasitic chemotherapy: a (close) view to a kill. Current Drug Targets 10, 246260. doi: 10.2174/138945009787581168.CrossRefGoogle Scholar
Veiga-Santos, P., Barrias, E. S., Santos, J. F. C., de Barros Moreira, T. L., de Carvalho, T. M., Urbina, J. A. and de Souza, W. (2012). Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi. International Journal of Antimicrobial Agents 40, 6171. doi: 10.1016/j.ijantimicag.2012.03.009.CrossRefGoogle ScholarPubMed
Vieira, N. C., Espíndola, L. S., Santana, J. M., Veras, M. L., Pessoa, O. D., Pinheiro, S. M., de Araújo, R. M., Lima, M. A. and Silveira, E. R. (2008). Trypanocidal activity of a new pterocarpan and other secondary metabolites of plants from Northeastern Brazil flora. Bioorganic Medicinal Chemistry 16, 16761682. doi: 10.1016/j.bmc.2007.11.027.CrossRefGoogle ScholarPubMed
Wu, S. Y., Leu, Y. L. and Chang, Y. L. (2012). Physalin F induces cell apoptosis in human renal carcinoma cells by targeting NF-kappaB and generating reactive oxygen species. PLoS ONE 7, e40727. doi: 10.1371/journal.pone.0040727.CrossRefGoogle ScholarPubMed