Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T06:29:59.873Z Has data issue: false hasContentIssue false

Phylogeography of Lyme borreliosis-group spirochetes and methicillin-resistant Staphylococcus aureus

Published online by Cambridge University Press:  23 May 2012

GABRIELE MARGOS*
Affiliation:
Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
SANTIAGO CASTILLO-RAMÍREZ
Affiliation:
Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
ANNE GATEWOOD HOEN
Affiliation:
Department of Community and Family Medicine, Dartmouth Medical School, Hanover, NH 03756, USA
*
Corresponding author: Gabriele Margos, University of Bath, Department of Biology and Biochemistry, 3 South, Claverton Down, Bath BA2 7AY, U.K. Tel: 0044-1225-385116. Email: [email protected]

Summary

Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have revolutionized understanding the global epidemiology of many medically relevant bacteria utilizing a number, mostly seven, of housekeeping genes. A more recent introduction, single nucleotide polymorphisms (SNPs), constitutes an even more powerful tool for bacterial typing, population genetic studies and phylogeography. The introduction of massive parallel sequencing has made genome re-sequencing and SNP discovery more economical for investigations of microbial organisms. In this paper we review phylogeographic studies on Lyme borreliosis (LB)-group spirochetes and methicillin-resistant Staphylococcus aureus (MRSA). Members of the LB-group spirochetes are tick-transmitted zoonotic bacteria that have many hosts and differ in their degree of host specialism, constituting a highly complex system. MRSA is a directly transmitted pathogen that may be acquired by contact with infected people, animals or MRSA-contaminated objects. For the LB-group spirochetes, MLSA has proved a powerful tool for species assignment and phylogeographic investigations while for S. aureus, genome-wide SNP data have been used to study the very short-term evolution of two important MRSA lineages, ST239 and ST225. These data are detailed in this review.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aanensen, D. M., Huntley, D. M., Feil, E. J., Al-Own, F. and Spratt, B. G. (2009). EpiCollect: linking smartphones to web applications for epidemiology, ecology and community data collection. PloS ONE 4, e6968.CrossRefGoogle ScholarPubMed
Aanensen, D. M. and Spratt, B. G. (2005). The multilocus sequence typing network: mlst.net. Nucleic Acids Research 33, W728733.CrossRefGoogle ScholarPubMed
Achtman, M. and Wagner, M. (2008). Microbial diversity and the genetic nature of microbial species. Nature Reviews Microbiology 6, 431440.CrossRefGoogle ScholarPubMed
Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. and Carniel, E. (1999). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proceedings of the National Academy of Sciences, USA 96, 1404314048.CrossRefGoogle ScholarPubMed
Atkinson, T. C., Briffa, K. R. and Coope, G. R. (1987). Seasonal temperatures in Britain during the past 22,000 years reconstructed using beetle remains. Nature 325, 587592.CrossRefGoogle Scholar
Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. and Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Reviews of Ecological Systems 18, 489522.CrossRefGoogle Scholar
Barbour, A. G., Bunikis, J., Travinsky, B., Hoen, A. G., Diuk-Wasser, M. A., Fish, D. and Tsao, J. I. (2010). Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. American Journal of Tropical Medicine and Hygiene 81, 11201131.CrossRefGoogle Scholar
Barbour, A. G. and Fish, D. (1993). The biological and social phenomenon of Lyme disease. Science 260, 16101616.CrossRefGoogle ScholarPubMed
Bishop, C. J., Aanensen, D. M., Jordan, G. E., Kilian, M., Hanage, W. P. and Spratt, B. G. (2009). Assigning strains to bacterial species via the internet. BMC Biology 7, 3.CrossRefGoogle ScholarPubMed
Bormane, A., Lucenko, I., Duks, A., Mavtchoutko, V., Ranka, R., Salmina, K. and Baumanis, V. (2004). Vectors of tick-borne diseases and epidemiological situation in Latvia in 1993–2002. International Journal of Medical Microbiology 293 Suppl 37, 3647.Google ScholarPubMed
Brito, P. H. and Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135, 439455.CrossRefGoogle ScholarPubMed
Brown, R. N. and Lane, R. S. (1992). Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science 256, 14391442.CrossRefGoogle ScholarPubMed
Brown, R. N., Peot, M. A. and Lane, R. S. (2006). Sylvatic maintenance of Borrelia burgdorferi (Spirochaetales) in Northern California: untangling the web of transmission. Journal of Medical Entomology 43, 743751.CrossRefGoogle ScholarPubMed
Brownstein, J. S., Holford, T. R. and Fish, D. (2003). A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environmental Health Perspectives 111, 11521157.CrossRefGoogle ScholarPubMed
Burgdorfer, W., Barbour, A. G., Hayes, S. F., Benach, J. L., Grunwaldt, E. and Davis, J. P. (1982). Lyme disease-a tick-borne spirochetosis? Science 216, 13171319.CrossRefGoogle ScholarPubMed
Castillo-Ramirez, S., Harris, S. R., Holden, M. T., He, M., Parkhill, J., Bentley, S. D. and Feil, E. J. (2011). The Impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathogens 7, e1002129.CrossRefGoogle ScholarPubMed
Chan, C. X., Beiko, R. G., Darling, A. E. and Ragan, M. A. (2009). Lateral transfer of genes and gene fragments in prokaryotes. Genome Biology and Evolution 1, 429438.CrossRefGoogle ScholarPubMed
Chan, C. X., Beiko, R. G. and Ragan, M. A. (2011). Lateral transfer of genes and gene fragments in Staphylococcus extends beyond mobile elements. Journal of Bacteriology 193, 39643977.CrossRefGoogle ScholarPubMed
Chan, E. Y. (2005). Advances in sequencing technology. Mutation Research 573, 1340.CrossRefGoogle ScholarPubMed
Christensen, E. M. (1959). A historical view of the ranges of the white-tailed deer in northern Wisconsin forests. American Midland Naturalist 61, 230238.CrossRefGoogle Scholar
Chu, C. Y., Liu, W., Jiang, B. G., Wang, D. M., Jiang, W. J., Zhao, Q. M., Zhang, P. H., Wang, Z. X., Tang, G. P., Yang, H. and Cao, W. C. (2008). Novel genospecies of Borrelia burgdorferi sensu lato from rodents and ticks in Southwestern China. Journal of Clinical Microbiology 46, 31303133.CrossRefGoogle ScholarPubMed
Cohan, F. M. (2002). What are bacterial species? Annual Reviews in Microbiology 56, 457487.CrossRefGoogle ScholarPubMed
Coles, B. J. (1998). Doggerland : a speculative survey Proceedings of the Prehistoric Society 64 4581.CrossRefGoogle Scholar
Corander, J., Connor, T. R., O'dwyer, C. A., Kroll, J. S. and Hanage, W. P. (2011). Population structure in the Neisseria, and the biological significance of fuzzy species. Journal of the Royal Society Interface 71, 12081215. doi: 10.1098/rsif.2011.0601.Google Scholar
Cronon, W. (1983). Changes in the Land : Indians, Colonists, and the Ecology of New England, 1st edition. edn. Hill and Wang, New York.Google Scholar
Crowder, C. D., Matthews, H. E., Schutzer, S., Rounds, M. A., Luft, B. J., Nolte, O., Campbell, S. R., Phillipson, C. A., Li, F., Sampath, R., Ecker, D. J. and Eshoo, M. W. (2010). Genotypic variation and mixtures of Lyme Borrelia in Ixodes ticks from North America and Europe. PloS ONE 5, e10650.CrossRefGoogle ScholarPubMed
De Michelis, S., Sewell, H. S., Collares-Pereira, M., Santos-Reis, M., Schouls, L. M., Benes, V., Holmes, E. C. and Kurtenbach, K. (2000). Genetic diversity of Borrelia burgdorferi sensu lato in ticks from mainland Portugal. Journal of Clinical Microbiology 38, 21282133.CrossRefGoogle ScholarPubMed
Diuk-Wasser, M. A., Gatewood, A. G., Cortinas, M. R., Yaremych-Hamer, S., Tsao, J., Kitron, U., Hickling, G., Brownstein, J. S., Walker, E., Piesman, J. and Fish, D. (2006). Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Ixodidae) in the United States. Journal of Medical Entomology 43, 166176.CrossRefGoogle ScholarPubMed
Diuk-Wasser, M. A., Vourc'h, G., Cislo, P., Hoen, A. G., Melton, F., Hamer, S. A., Rowland, M., Cortinas, R., Hickling, G. J., Tsao, J., Barbour, A. G., Kitron, U., Piesman, J. and Fish, D. (2010). Field and climate-based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tick-borne disease agents in the eastern United States. Global Ecology and Biogeography 19 504514.CrossRefGoogle Scholar
Dubska, L., Literak, I., Kocianova, E., Taragelova, V. and Sychra, O. (2009). Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe. Applied and Environmental Microbiology 75, 596602.CrossRefGoogle ScholarPubMed
Eisen, L. and Lane, R. S. (2002). Vectors of Borrelia burgdorferi sensu lato. In Lyme Borreliosis: Biology, Epidemiology and Control (eds. Gray, J., Kahl, O., Lane, R. S. and Stanek, G.), pp. 91115. CABI Publishing, Wallingford.CrossRefGoogle Scholar
Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. and Spratt, B. G. (2000). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of Clinical Microbiology 38, 10081015.CrossRefGoogle ScholarPubMed
Excoffier, L. and Heckel, G. (2006). Computer programs for population genetics data analysis: a survival guide. Nature Reviews Genetics 7, 745758.CrossRefGoogle ScholarPubMed
Falco, R. C., Daniels, T. J. and Fish, D. (1995). Increase in abundance of immature Ixodes scapularis (Acari: Ixodidae) in an emergent Lyme disease endemic area. Journal of Medical Entomology 32, 522526.CrossRefGoogle Scholar
Feil, E. J., Cooper, J. E., Grundmann, H., Robinson, D. A., Enright, M. C., Berendt, T., Peacock, S. J., Smith, J. M., Murphy, M., Spratt, B. G., Moore, C. E. and Day, N. P. (2003). How clonal is Staphylococcus aureus? Journal of Bacteriology 185, 33073316.CrossRefGoogle ScholarPubMed
Fingerle, V., Rauser, S., Hammer, B., Kahl, O., Heimerl, C., Schulte-Spechtel, U., Gern, L. and Wilske, B. (2002). Dynamics of dissemination and outer surface protein expression of different European Borrelia burgdorferi sensu lato strains in artificially infected Ixodes ricinus nymphs. Journal of Clinical Microbiology 40, 14561463.CrossRefGoogle ScholarPubMed
Garrick, R. C., Caccone, A. and Sunnucks, P. (2010). Inference of population history by coupling exploratory and model-driven phylogeographic analyses. International Journal of Molecular Science 11, 11901227.CrossRefGoogle ScholarPubMed
Gern, L., Estrada-Pena, A., Frandsen, F., Gray, J. S., Jaenson, T. G., Jongejan, F., Kahl, O., Korenberg, E., Mehl, R. and Nuttall, P. A. (1998). European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt fürBakteriology 287, 196204.CrossRefGoogle ScholarPubMed
Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., Stackebrandt, E., Van De Peer, Y., Vandamme, P., Thompson, F. L. and Swings, J. (2005). Opinion: Re-evaluating prokaryotic species. Nature Reviews Microbiology 3, 733739.CrossRefGoogle ScholarPubMed
Gevers, D., Dawyndt, P., Vandamme, P., Willems, A., Vancanneyt, M., Swings, J. and De Vos, P. (2006). Stepping stones towards a new prokaryotic taxonomy. Philosophical Transactions of the Royal Society London B Biological Sciences 361, 19111916.CrossRefGoogle ScholarPubMed
Gomez-Diaz, E., Boulinier, T., Sertour, N., Cornet, M., Ferquel, E. and Mccoy, K. D. (2011). Genetic structure of marine Borrelia garinii and population admixture with the terrestrial cycle of Lyme borreliosis. Environmental Microbiology 9, 24532467.CrossRefGoogle Scholar
Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. and Tiedje, J. M. (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology 57, 8191.CrossRefGoogle ScholarPubMed
Grundmann, H., Aires-De-Sousa, M., Boyce, J. and Tiemersma, E. (2006). Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368, 874885.CrossRefGoogle ScholarPubMed
Hall, N. (2007). Advanced sequencing technologies and their wider impact in microbiology. Journal of Experimental Biology 210, 15181525.CrossRefGoogle ScholarPubMed
Halls, L. K. (1984). White-tailed Deer:Eecology and Management, Stackpole Books, Harrisburg, PA.Google Scholar
Hamer, S. A., Tsao, J. I., Walker, E. D. and Hickling, G. J. (2010). Invasion of the Lyme Disease vector Ixodes scapularis: Implications for Borrelia burgdorferi endemicity. Ecohealth DOI: 10.1007/s10393-010-0287-0.CrossRefGoogle ScholarPubMed
Hanage, W. P., Fraser, C. and Spratt, B. G. (2005). Fuzzy species among recombinogenic bacteria. BMC Biology 3, 6.CrossRefGoogle ScholarPubMed
Hanincova, K., Schafer, S. M., Etti, S., Sewell, H. S., Taragelova, V., Ziak, D., Labuda, M. and Kurtenbach, K. (2003 a). Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 1120.CrossRefGoogle ScholarPubMed
Hanincova, K., Taragelova, V., Koci, J., Schafer, S. M., Hails, R., Ullmann, A. J., Piesman, J., Labuda, M. and Kurtenbach, K. (2003 b). Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Applied and Environmental Microbiology 69, 28252830.CrossRefGoogle Scholar
Harris, S. R., Feil, E. J., Holden, M. T. G., Quail, M. A., Nickerson, E. K., Chantratita, N., Gardete, S., Tavares, A., Day, N., Lindsay, J. A., Edgeworth, J. D., Lencastre, D. H., Parkhill, J., Paecock, S. J. and Bentley, S. D. (2010). Evolution of MRSA During Hospital Transmission and Intercontinental Spread. Science 327, 469474.CrossRefGoogle ScholarPubMed
Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68, 87112.CrossRefGoogle Scholar
Hoen, A. G., Margos, G., Bent, S. J., Kurtenbach, K. and Fish, D. (2009). Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proceedings of the National Academy of Sciences, USA 106, 1501315018.CrossRefGoogle ScholarPubMed
Holt, K. E., Parkhill, J., Mazzoni, C. J., Roumagnac, P., Weill, F. X., Goodhead, I., Rance, R., Baker, S., Maskell, D. J., Wain, J., Dolecek, C., Achtman, M. and Dougan, G. (2008). High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nature Genetics 40, 987993.CrossRefGoogle ScholarPubMed
Humair, P. and Gern, L. (2000). The wild hidden face of Lyme borreliosis in Europe. Microbes and Infection 2, 915922.CrossRefGoogle ScholarPubMed
Humphrey, P. T., Caporale, D. A. and Brisson, D. (2010). Uncoordinated Phylogeography of Borrelia burgdorferi and Its tick vector, Ixodes scapularis. Evolution 64, 26532663.CrossRefGoogle ScholarPubMed
Jackson, J. O. and Defoliart, G. R. (1970). Ixodes scapularis Say in northern Wisconsin. Journal of Medical Entomology 7, 124125.CrossRefGoogle ScholarPubMed
Keim, P., Van Ert, M. N., Pearson, T., Vogler, A. J., Huynh, L. Y. and Wagner, D. M. (2004). Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infection, Genetics and Evolution 4, 205213.CrossRefGoogle ScholarPubMed
Kidd, D. M. and Ritchie, M. G. (2006). Phylogeographic information systems: putting the geography into phylogeography. Journal of Biogeography 33, 18511865.CrossRefGoogle Scholar
Knowles, L. L. and Maddison, W. P. (2002). Statistical phylogeography. Molecular Ecology 11, 26232635.CrossRefGoogle ScholarPubMed
Koeppel, A., Perry, E. B., Sikorski, J., Krizanc, D., Warner, A., Ward, D. M., Rooney, A. P., Brambilla, E., Connor, N., Ratcliff, R. M., Nevo, E. and Cohan, F. M. (2008). Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proceedings of the National Academy of Sciences, USA 105, 25042509.CrossRefGoogle ScholarPubMed
Konstantinidis, K. T., Ramette, A. and Tiedje, J. M. (2006). The bacterial species definition in the genomic era. Philosophical Transactions of the Royal Society London B Biological Sciences 361, 19291940.CrossRefGoogle ScholarPubMed
Konstantinidis, K. T. and Tiedje, J. M. (2005). Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences, USA 102, 25672572.CrossRefGoogle ScholarPubMed
Korenberg, E. I., Gorelova, N. B. and Kovalevskii, Y. V. (2002). Ecology of Borrelia burgdorferi sensu lato in Russia. In Lyme Borreliosis: Biology, Epidemiology and Control (eds. Gray, J., Kahl, O., Lane, R. S. and Stanek, G.), CABI Publishing, Wallingford.Google Scholar
Kotetishvili, M., Kreger, A., Wauters, G., Morris, J. G. Jr., Sulakvelidze, A. and Stine, O. C. (2005). Multilocus sequence typing for studying genetic relationships among Yersinia species. Journal of Clinical Microbiology 43, 26742684.CrossRefGoogle ScholarPubMed
Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., Cui, L., Oguchi, A., Aoki, K. and Nagai, Y. (2001). Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 12251240.CrossRefGoogle ScholarPubMed
Kurtenbach, K., De Michelis, S., Etti, S., Schafer, S. M., Sewell, H. S., Brade, V. and Kraiczy, P. (2002). Host association of Borrelia burgdorferi sensu lato-the key role of host complement. Trends in Microbiology 10, 7479.CrossRefGoogle ScholarPubMed
Kurtenbach, K., Hanincova, K., Tsao, J. I., Margos, G., Fish, D. and Ogden, N. H. (2006). Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature Reviews Microbiology 4, 660669.CrossRefGoogle ScholarPubMed
Kurtenbach, K., Hoen, A. G., Bent, S. J., Vollmer, S. A., Ogden, N. H. and Margos, G. (2010). Population biology of Lyme borreliosis spirochetes. In Bacterial Population Genetics in Infectious Disease (eds. Robinson, D. A., Falush, D. and Feil, E. J.), John Wiley & Sons, Inc.Google Scholar
Kurtenbach, K., Peacey, M., Rijpkema, S. G., Hoodless, A. N., Nuttall, P. A. and Randolph, S. E. (1998 a). Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Applied and Environmental Microbiology 64, 11691174.CrossRefGoogle ScholarPubMed
Kurtenbach, K., Sewell, H. S., Ogden, N. H., Randolph, S. E. and Nuttall, P. A. (1998 b). Serum complement sensitivity as a key factor in Lyme disease ecology. Infection and Immunity 66, 12481251.CrossRefGoogle ScholarPubMed
Lan, R. and Reeves, P. R. (2001). When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends in Microbiology 9, 419424.CrossRefGoogle Scholar
Lin, T., Gao, L., Seyfang, A. and Oliver, J. H. Jr. (2005). ‘Candidatus Borrelia texasensis’, from the American dog tick Dermacentor variabilis. International Journal of Systematic and Evolutionary Microbiology 55, 685693.CrossRefGoogle ScholarPubMed
Lin, T., Oliver, J. H. Jr. and Gao, L. (2004). Molecular characterization of Borrelia isolates from ticks and mammals from the southern United States. Journal of Parasitology 90, 12981307.CrossRefGoogle ScholarPubMed
Lin, T., Oliver, J. H. Jr., Gao, L., Kollars, T. M. Jr. and Clark, K. L. (2001). Genetic heterogeneity of Borrelia burgdorferi sensu lato in the southern United States based on restriction fragment length polymorphism and sequence analysis. Journal of Clinical Microbiology 39, 25002507.CrossRefGoogle ScholarPubMed
Maggi, R. G., Reichelt, S., Toliver, M. and Engber, B. (2010). Borrelia species in Ixodes affinis and Ixodes scapularis ticks collected from the coastal plain of North Carolina. Ticks and Tick Borne Diseases 1, 168171.CrossRefGoogle ScholarPubMed
Maiden, M. C. (2006). Multilocus sequence typing of bacteria. Annual Reviews of Microbiology 60, 561588.CrossRefGoogle ScholarPubMed
Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman, M. and Spratt, B. G. (1998). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences, USA 95, 31403145.CrossRefGoogle Scholar
Manel, S., Schwartz, M. K., Luikart, G. and Raberlet, P. (2003). Landscape genetics: combining landscape ecology and populations genetics. Trends in Ecology and Evolution 18, 189197.CrossRefGoogle Scholar
Margos, G., Gatewood, A. G., Aanensen, D. M., Hanincova, K., Terekhova, D., Vollmer, S. A., Cornet, M., Piesman, J., Donaghy, M., Bormane, A., Hurn, M. A., Feil, E. J., Fish, D., Casjens, S., Wormser, G. P., Schwartz, I. and Kurtenbach, K. (2008). MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proceedings of the National Academy of Sciences, USA 105, 87308735.CrossRefGoogle ScholarPubMed
Margos, G., Hojgaard, A., Lane, R. S., Cornet, M., Fingerle, V., Rudenko, N., Ogden, N., Aanensen, D. M., Fish, D. and Piesman, J. (2010). Multilocus sequence analysis of Borrelia bissettii strains from North America reveals a new Borrelia species, Borrelia kurtenbachii. Ticks and Tick Borne Diseases 1, 151158.CrossRefGoogle ScholarPubMed
Margos, G., Vollmer, S. A., Cornet, M., Garnier, M., Fingerle, V., Wilske, B., Bormane, A., Vitorino, L., Collares-Pereira, M., Drancourt, M. and Kurtenbach, K. (2009). A new Borrelia species defined by Multilocus Sequence Analysis of housekeeping genes. Applied and Environmental Microbiology 75, 54105416.CrossRefGoogle ScholarPubMed
Margos, G., Vollmer, S. A., Ogden, N. H. and Fish, D. (2011). Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infection, Genetics and Evolution 11, 15451563.CrossRefGoogle ScholarPubMed
Marshall, W. F., 3rd, Telford, S. R., 3rd, Rys, P. N., Rutledge, B. J., Mathiesen, D., Malawista, S. E., Spielman, A. and Persing, D. H. (1994). Detection of Borrelia burgdorferi DNA in museum specimens of Peromyscus leucopus. Journal of Infectious Diseases 170, 10271032.CrossRefGoogle ScholarPubMed
Marti Ras, N., Postic, D., Foretz, M. and Baranton, G. (1997). Borrelia burgdorferi sensu stricto, a bacterial species “made in the U.S.A.”? International Journal for Systematic Bacteriology 47, 11121117.CrossRefGoogle Scholar
Masuzawa, T. (2004). Terrestrial distribution of the Lyme borreliosis agent Borrelia burgdorferi sensu lato in East Asia. Japanese Journal of Infectious Diseases 57, 229235.Google ScholarPubMed
Maupin, G. O., Gage, K. L., Piesman, J., Montenieri, J., Sviat, S. L., Vanderzanden, L., Happ, C. M., Dolan, M. and Johnson, B. J. (1994). Discovery of an enzootic cycle of Borrelia burgdorferi in Neotoma mexicana and Ixodes spinipalpis from northern Colorado, an area where Lyme disease is nonendemic. Journal of Infectious Diseases 170, 636643.CrossRefGoogle ScholarPubMed
Mccabe, T. R. and Mccabe, R. E. (1997). Recounting whitetails past. In The Science of Overabundance: Deer Ecology and Population Management (eds. McShea, W. J., Underwood, H. B. and Rappole, J. H.), pp. 1126. Smithosian Institution Press, Washington DC.Google Scholar
Mccoy, K. D., Boulinier, T., Tirard, C. and Michalakis, Y. (2003). Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57, 288296.Google ScholarPubMed
Mccoy, K. D., Chapuis, E., Tirard, C., Boulinier, T., Michalakis, Y., Bohec, C. L., Maho, Y. L. and Gauthier-Clerc, M. (2005). Recurrent evolution of host-specialized races in a globally distributed parasite. Proceedings of Biological Sciences 272, 23892395.Google Scholar
Nakao, M., Miyamoto, K. and Fukunaga, M. (1994). Lyme disease spirochetes in Japan: enzootic transmission cycles in birds, rodents, and Ixodes persulcatus ticks. Journal of Infectious Diseases 170, 878882.CrossRefGoogle ScholarPubMed
Nubel, U., Dordel, J., Kurt, K., Strommenger, B., Westh, H., Shukla, S. K., Zemlickova, H., Leblois, R., Wirth, T., Jombart, T. and Al, E. (2010). A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathogens 6, e1000855.CrossRefGoogle ScholarPubMed
Nubel, U., Roumagnac, P., Feldkamp, M., Song, J. H., Ko, K. S., Huang, Y. C., Coombs, G., Ip, M., Westh, H., Skov, R., Struelens, M. J., Goering, R. V., Strommenger, B., Weller, A., Witte, W. and Achtman, M. (2008). Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proceedings of the National Academy of Sciences, USA 105, 1413014135.CrossRefGoogle ScholarPubMed
Nubel, U., Strommenger, B., Layer, F. and Witte, W. (2011). From types to trees: Reconstructing the spatial spread of Staphylococcus aureus based on DNA variation. International Journal of Medical Microbiology 301, 614618.CrossRefGoogle ScholarPubMed
Ogden, N. H., Artsob, H., Margos, G. and Tsao, J. (2011a). Non-rickettsial tick-borne bacteria and the diseases they cause. In Biology of Ticks (eds. Sonenshine, D. E. and Roe, M.), Oxford University Press, USA.Google ScholarPubMed
Ogden, N. H., Bouchard, C., Lindsay, L. R., Margos, G., Kurtenbach, K., Trudel, L., Nguon, S. and Milord, F. (2011 b). Investigation of genotypes of Borrelia burgdorferi in Ixodes scapularis ticks collected in surveillance in Canada. Applied and Environmental Microbiology 77, 32443254.CrossRefGoogle ScholarPubMed
Ogden, N. H., Bouchard, C., Kurtenbach, K., Margos, G., Lindsay, L. R., Trudel, L., Nguon, S. and Milord, F. (2010). Active and passive surveillance and phylogenetic analysis of Borrelia burgdorferi elucidate the process of Lyme disease risk emergence in Canada. Environmental Health Perspectives 118, 909914.CrossRefGoogle ScholarPubMed
Oliver, J. H. Jr., Lin, T., Gao, L., Clark, K. L., Banks, C. W., Durden, L. A., James, A. M. and Chandler, F. W. Jr. (2003). An enzootic transmission cycle of Lyme borreliosis spirochetes in the southeastern United States. Proceedings of the National Academy of Sciences, USA 100, 1164211645.CrossRefGoogle ScholarPubMed
Pearson, T., Okinaka, R. T., Foster, J. T. and Keim, P. (2009). Phylogenetic understanding of clonal populations in an era of whole genome sequencing. Infection, Genetics and Evolution 9, 10101019.CrossRefGoogle Scholar
Picken, R. N., Cheng, Y., Han, D., Nelson, J. A., Reddy, A. G., Hayden, M. K., Picken, M. M., Strle, F., Bouseman, J. K. and Trenholme, G. M. (1995). Genotypic and phenotypic characterization of Borrelia burgdorferi isolated from ticks and small animals in Illinois. Journal of Clinical Microbiology 33, 23042315.CrossRefGoogle ScholarPubMed
Picken, R. N., Cheng, Y., Strle, F. and Picken, M. M. (1996). Patient isolates of Borrelia burgdorferi sensu lato with genotypic and phenotypic similarities of strain 25015. Journal of Infectious Diseases 174, 11121115.CrossRefGoogle ScholarPubMed
Picken, R. N. and Picken, M. M. (2000). Molecular characterization of Borrelia spp. isolates from greater metropolitan Chicago reveals the presence of Borrelia bissettii. Preliminary report. Journal of Molecular Microbiology and Biotechnology 2, 505507.Google ScholarPubMed
Picken, R. N., Strle, F., Ruzic-Sabljic, E., Maraspin, V., Lotric-Furlan, S., Cimperman, J., Cheng, Y. and Picken, M. M. (1997). Molecular subtyping of Borrelia burgdorferi sensu lato isolates from five patients with solitary lymphocytoma. Journal of Investigative Dermatology 108, 9297.CrossRefGoogle ScholarPubMed
Postic, D., Garnier, M. and Baranton, G. (2007). Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates - description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. International Journal of Medical Microbiology 297, 263271.CrossRefGoogle ScholarPubMed
Qiu, W. G., Bruno, J. F., Mccaig, W. D., Xu, Y., Livey, I., Schriefer, M. E. and Luft, B. J. (2008). Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerging Infectious Diseases 14, 10971104.CrossRefGoogle ScholarPubMed
Randolph, S. E. (2000). Ticks and tick-borne disease systems in space and from space. Advances in Parasitology 47, 217243.CrossRefGoogle ScholarPubMed
Randolph, S. E. (2004). Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 129 Suppl, S37S65.CrossRefGoogle ScholarPubMed
Reisen, W. K. (2010). Landscape epidemiology of vector-borne diseases. Annual Reviews in Entomology 55, 461483.CrossRefGoogle ScholarPubMed
Richter, D., Postic, D., Sertour, N., Livey, I., Matuschka, F. R. and Baranton, G. (2006). Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. International Journal of Systematic and Evolutionary Microbiology 56, 873881.CrossRefGoogle ScholarPubMed
Robinson, D. A. and Enright, M. C. (2003). Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 47, 39263934.CrossRefGoogle ScholarPubMed
Rossello-Mora, R. and Amann, R. (2001). The species concept for prokaryotes. FEMS Microbiology Reviews 25, 3967.CrossRefGoogle ScholarPubMed
Rudenko, N., Golovchenko, M., Grubhoffer, L. and Oliver, J. H. Jr. (2009 a). Borrelia carolinensis sp.nov. – a new (14th) member of Borrelia burgdorferi sensu lato complex from the southeastern United States. Journal of Clinical Microbiology 47, 134141.CrossRefGoogle Scholar
Rudenko, N., Golovchenko, M., Lin, T., Gao, L., Grubhoffer, L. and Oliver, J. H. Jr. (2009 b). Delineation of a new species of the Borrelia burgdorferi sensu lato complex, Borrelia americana sp.nov. Journal of Clinical Microbiology 47, 38753880.CrossRefGoogle ScholarPubMed
Scott, J. D., Lee, M. K., Fernando, K., Durden, L. A., Jorgensen, D. R., Mak, S. and Morshed, M. G. (2010). Detection of Lyme disease spirochete, Borrelia burgdorferi sensu lato, including three novel genotypes in ticks (Acari: Ixodidae) collected from songbirds (Passeriformes) across Canada. Journal of Vector Ecology 35, 124139.CrossRefGoogle ScholarPubMed
Scrimenti, R. J. (1970). Erythema chronicum migrans. Archives of Dermatology 102, 104105.CrossRefGoogle ScholarPubMed
Skuballa, J., Oehme, R., Hartelt, K., Petney, T., Bucher, T., Kimmig, P. and Taraschewski, H. (2007). European Hedgehogs as Hosts for Borrelia spp., Germany. Emerging Infectious Diseases 13, 952953.CrossRefGoogle ScholarPubMed
Smith, R. P. Jr., Muzaffar, S. B., Lavers, J., Lacombe, E. H., Cahill, B. K., Lubelczyk, C. B., Kinsler, A., Mathers, A. J. and Rand, P. W. (2006). Borrelia garinii in seabird ticks (Ixodes uriae), Atlantic Coast, North America. Emerging Infectious Diseases 12, 19091912.CrossRefGoogle ScholarPubMed
Spielman, A. (1994). The emergence of Lyme disease and human babesiosis in a changing environment. Annals of the New York Academy of Science 740, 146156.CrossRefGoogle Scholar
Spratt, B. G. (1999). Multilocus sequence typing: molecular typing of bacterial pathogens in an era of rapid DNA sequencing and the Internet. Current Opinion in Microbiology 2, 312316.CrossRefGoogle Scholar
Steere, A. C., Bartenhagen, N. H., Craft, J. E., Hutchinson, G. J., Newman, J. H., Pachner, A. R., Rahn, D. W., Sigal, L. H., Taylor, E. and Malawista, S. E. (1986). Clinical manifestations of Lyme disease. Zentralblatt für Bakteriology, Mikrobiology und Hygiene [A] 263, 201205.Google ScholarPubMed
Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., Dezzani, R., Delmelle, E., Vierling, L. and Waits, L. P. (2007). Putting the “landscape” in landscape genetics. Heredity 98, 128142.CrossRefGoogle Scholar
Takano, A., Nakao, M., Masuzawa, T., Takada, N., Yano, Y., Ishiguro, F., Fujita, H., Ito, T., Ma, X., Oikawa, Y., Kawamori, F., Kumagai, K., Mikami, T., Hanaoka, N., Ando, S., Honda, N., Taylor, K., Tsubota, T., Konnai, S., Watanabe, H., Ohnishi, M. and Kawabata, H. (2011). Multilocus Sequence Typing Implicates Rodents as the Main Reservoir Host of Human-Pathogenic Borrelia garinii in Japan. Journal of Clinical Microbiology 49, 20352039.CrossRefGoogle ScholarPubMed
Takuno, S., Kado, T., Sugino, R. P., Nakhleh, L. and Innan, H. (2012). Population Genomics in Bacteria: A Case Study of Staphylococcus aureus. Molecular Biology and Evolution 29, 797809.CrossRefGoogle ScholarPubMed
Taragel'ova, V., Koci, J., Hanincova, K., Kurtenbach, K., Derdakova, M., Ogden, N. H., Literak, I., Kocianova, E. and Labuda, M. (2008). Blackbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of borreliosis in Central Europe. Applied and Environmental Microbiology 74, 12891293.CrossRefGoogle Scholar
Tsao, J. I. (2009). Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Veterinary Research 40, 36.CrossRefGoogle ScholarPubMed
Van Ert, M. N., Easterday, W. R., Simonson, T. S., U'ren, J. M., Pearson, T., Kenefic, L. J., Busch, J. D., Huynh, L. Y., Dukerich, M., Trim, C. B., Beaudry, J., Welty-Bernard, A., Read, T., Fraser, C. M., Ravel, J. and Keim, P. (2007). Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. Journal of Clinical Microbiology 45, 4753.CrossRefGoogle ScholarPubMed
Vitorino, L. R., Margos, G., Feil, E. J., Collares-Pereira, M., Ze-Ze, L. and Kurtenbach, K. (2008). Fine-scale phylogeographic structure of Borrelia lusitaniae revealed by Multilocus Sequence Typing. PloS ONE 3, e4002.CrossRefGoogle ScholarPubMed
Vollmer, S. A., Margos, G., Donaghy, M., Bormane, A., Drancourt, M., Garnier, M., Cornet, M. and Kurtenbach, K. (2011). Phylogeographic structuring and evolutionary relationships of Lyme Borreliosis spirochetes in Europe as revealed by MLSA. Environmental Microbiology 13, 184192.CrossRefGoogle Scholar
Waters, J. H. (1963). Biochemical Relationships 0f the Mouse Peromyscus in New England. Systematic Zoology 12, 122133.CrossRefGoogle Scholar
Wertheim, H. F., Melles, D. C., Vos, M. C., Van Leeuwen, W., Van Belkum, A., Verbrugh, H. A. and Nouwen, J. L. (2005). The role of nasal carriage in Staphylococcus aureus infections. Lancet Infectious Diseases 5, 751762.CrossRefGoogle ScholarPubMed
Wilske, B., Busch, U., Eiffert, H., Fingerle, V., Pfister, H. W., Rossler, D. and Preac-Mursic, V. (1996). Diversity of OspA and OspC among cerebrospinal fluid isolates of Borrelia burgdorferi sensu lato from patients with neuroborreliosis in Germany. Medical Microbiology and Immunology 184, 195201.CrossRefGoogle ScholarPubMed
Wilson, M. L., Adler, G. H. and Spielman, A. (1985). Correlation between abundance of deer and that of the deer tick, Ixodes dammini (Acari, Ixodidae). Annals of the Entomological Society of America 78, 172176.CrossRefGoogle Scholar