Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T01:47:12.106Z Has data issue: false hasContentIssue false

Peptidase in the plasma of mice infected with Trypanosoma brucei brucei

Published online by Cambridge University Press:  06 April 2009

G. Knowles
Affiliation:
International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya
S. J. Black
Affiliation:
International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya
D. D. Whitelaw
Affiliation:
International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya

Summary

The plasma of mice infected with pleomorphic Trypanosoma brucei brucei contains a peptidase which has the same electrophoretic mobility on starch gels as a parasite peptidase. An enzyme with this electrophoretic mobility was not detected in the plasma of uninfected mice. The molecular weight of this enzyme in either parasite lysate or plasma from infected mice was approximately 40000 Da when assayed on a size exclusion column using high-performance liquid chromatography. The enzyme can cleave the dipeptides leu-ala, val-leu and pro-leu, but not the dipeptide phe-ala. The enzyme also cleaved the tripeptides tyr-tyr-tyr and leu-gly-gly. Another parasite peptidase which migrates on starch gels to a different position than the above-mentioned peptidase cleaved the dipeptides leu-ala, val-leu and pro-leu but could not cleave the tripeptides tyr-tyr-tyr or leu-gly-gly. Furthermore, incubation of this parasite peptidase with normal mouse plasma at 37 °C resulted in an apparent loss of detectable activity. It is postulated that the plasma of mice modifies either the charge or enzymic activity of this peptidase. We speculate that the parasite peptidase present in the plasma of mice infected with T. brucei could contribute to pathogenesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Black, S. J., Sendashonga, C. N., Lalor, P. A., Whitelaw, D. D., Jack, R. M., Morrison, W. I. & Murray, M. (1983). Regulation of the growth and differentiation of Trypanosoma (Trypanozoon) brucei brucei in resistant (C57B1/6) and susceptible (C3H/He) mice. Parasite Immunology 5, 465–78.CrossRefGoogle Scholar
Black, S. J., Sendashonga, C. N., O'Brien, C., Borowy, N. K., Naessens, M., Webster, P. & Murray, M. (1985). Regulation of parasitaemia in mice infected with Trypanosoma brucei. Current Topics in Microbiology and Immunology 117, 93118.Google ScholarPubMed
Boreham, P. F. L. (1979). The pathogenesis of African and American trypanosomiasis. In Biochemistry and Physiology of Protozoa, vol. 2 (ed. Levandowsky, M. and Hutner, S. H.), pp. 429–57. New York and London: Academic Press.Google Scholar
Boreham, P. F. L. (1985). Autocoids: their release and possible role in pathogenesis of African trypanosomiasis. In Immunology and Pathogenesis of Trypanosomiasis, (ed. Tizard, I. R.), pp. 4566. Florida: CRC Press.Google Scholar
Conn, P. M., Staley, D., Harris, C., Andrews, W. V., Gorospe, W. C., McArdle, C. A., Huckle, W. R. & Hansen, J. (1986). Mechanism of action of gonadotropin releasing hormone. Annual Review of Physiology 48, 495513.Google Scholar
Firtel, R. A. & Brackenbury, R. W. (1972). Partial characterisation of several protein and amino acid metabolizing enzymes in the cellular slime mold Dictyostelium discoideum. Developmental Biology 27, 307–21.Google Scholar
Gershengorn, M. C. (1986). Mechanism of thyrotropin releasing hormone stimulation of pituitary hormone secretion. Annual Review of Physiology 48, 515–26.CrossRefGoogle ScholarPubMed
Gibson, W. C., Marshall, T. F. de C. & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism. A new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.CrossRefGoogle Scholar
Gibson, W. C., Mehlitz, D., Lanham, S. M. & Godfrey, D. G. (1978). The identification of Trypanosoma brucei gambiense in Liberian pigs and dogs by isoenzymes and by resistance to human plasma. Tropenmedizin und Parasitologie 29, 335–45.Google Scholar
Hambrey, P. N., Tizard, I. R. & Mellors, A. (1980). Accumulation of phospholipase A1 in tissue fluid of rabbits infected with Trypanosoma brucei. Tropenmedizin und Parasitologie 31, 439–43.Google ScholarPubMed
Huan, C. N., Webb, L., Lambert, P. H. & Miescher, P. A. (1976). Haemolytie aspects of Trypanosoma brucei. In Biochemistry of Parasites and Host-Parasite Relationships, (ed. H., Van den Bossche), pp. 409–12. Amsterdam: Elsevier.Google Scholar
Jennings, F. W., Murray, P. K., Murray, M. & Urquhart, G. M. (1972). Protein catabolism in trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 277.Google Scholar
Landsteiner, K. & Raubitschek, H. (1907). Beobachtungen über Hämolyse und Hämagglutination. Zentralblatt für Bakteriologie, Parasitenkunde, Infectionskrankheiten und Hygiene 45, 660–7.Google Scholar
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Lewis, W. H. P. & Harris, H. (1967). Human red cell peptidases. Nature, London 215, 351–5.CrossRefGoogle ScholarPubMed
Mehlitz, D., Zillman, U., Scott, C. M. & Godfrey, D. G. (1982). Epidemiological studies on the animal reservoir of gambiense sleeping sickness. Part IV. Characterisation of Trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmedizin und Parasitologie 23, 113–18.Google Scholar
Morrison, W. I., Murray, M. & Akol, G. W. O. (1985). Immune responses of cattle to African trypanosomes. In Immunology and Pathogenesis of Trypanosomiasis, (ed. Tizard, I. R.), pp. 104–31. Florida: CRC Press.Google Scholar
Murray, M. (1974). The pathology of African trypanosomiasis In Progress in Immunolgy, (ed. Brent, L. and Holborow, J.), pp. 181–92. Amsterdam and Oxford: North Holland Publishing Company.Google Scholar
Rangel, A. A., Aranjo, P. M. T., Pepka, D. & Costa, M. G. (1981). Trypanosoma cruzi: Isolation and characterization of a proteinase. Experimental Parasitology 52, 199209.Google Scholar
Rautenberg, P., Schadler, R., Reinwald, E. & Risse, H. J. (1982). Study on the proteolytic enzyme from Trypanosoma congolense: purification and some biochemical properties. Molecular and Cellular Biochemistry 47, 151–9.Google Scholar
Seed, J. R. & Hall, J. E. (1985). Pathophysiology of African trypanosomes. In Immunology and Pathogenesis of Trypanosomiasis (ed. Tizard, I. R.), pp. 112. Florida: CRC Press.Google Scholar
Stibbs, H. H. & Seed, J. R. (1976). Elevated serum and hepatic tyrosine aminotransferase in voles chronically infected with Trypanosoma brucei gambiense. Experimental Parasitology 39, 16.Google Scholar
Tabel, H. (1979). Serum protein changes in bovine trypanosomiasis. In Pathogenicity of Trypanosomes, (ed. Losos, G. and Chouinard, A.), pp. 151–53, Ottawa: IDRC.Google Scholar
Tizard, I. R. & Holmes, W. L. (1976). The generation of toxic activity from Trypanosoma congolense. Experientia 32, 1533–4.Google Scholar
Tizard, I., Nielsen, K. H., Seed, J. R. & Hall, J. E. (1978). Biologically active products from African trypanosomes. Microbiological Reviews 42, 661–81.CrossRefGoogle ScholarPubMed
Valli, V. E. O., Mills, J. N., Lumsden, J. H., Rattray, J. B. & Forsberg, C. M. (1980). The quantitation of Trypanosoma congolense in calves. II. Biochemical changes. Tropenmedizin und Parasitologie 31, 288–98.Google Scholar
Wellde, B., Lotsch, R., Deindl, G., Sadun, E., Williams, J. & Warui, G. (1974). Trypanosoma congolense. 1. Clinical observations of experimentally infected cattle. Experimental Parasitology 36, 619.CrossRefGoogle ScholarPubMed
Whitelaw, D. D., Moulton, J. E., Morrison, W. I. & Murray, M. (1985). Central nervous system involvement in goats undergoing primary infections with Trypanosoma brucei and relapse infections after chemotherapy. Parasitology 90, 255–68.Google Scholar
Young, C. J. & Godfrey, D. G. (1983). Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 77, 467–81.CrossRefGoogle ScholarPubMed
Wraxall, B. G. D. & Culliford, B. J. (1968). A thin layer starch gel method for enzyme typing blood stains. Journal of the Forensic Science Society 8, 81.Google Scholar