Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T05:45:10.328Z Has data issue: false hasContentIssue false

Parasites of the shore crab Carcinus maenas (L.): implications for reproductive potential and invasion success

Published online by Cambridge University Press:  30 September 2010

C. ZETLMEISL*
Affiliation:
Karlsruhe Institute of Technology, Zoological Institute, Department of Ecology and Parasitology, Kornblumenstrasse 13, 76131 Karlsruhe, Germany
J. HERMANN
Affiliation:
Karlsruhe Institute of Technology, Zoological Institute, Department of Ecology and Parasitology, Kornblumenstrasse 13, 76131 Karlsruhe, Germany
T. PETNEY
Affiliation:
Karlsruhe Institute of Technology, Zoological Institute, Department of Ecology and Parasitology, Kornblumenstrasse 13, 76131 Karlsruhe, Germany
H. GLENNER
Affiliation:
Department of Evolutionary Biology, Institute of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
C. GRIFFITHS
Affiliation:
Centre for Invasion Biology, Zoology Department, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
H. TARASCHEWSKI
Affiliation:
Karlsruhe Institute of Technology, Zoological Institute, Department of Ecology and Parasitology, Kornblumenstrasse 13, 76131 Karlsruhe, Germany
*
*Corresponding author: Karlsruhe Institute of Technology, Zoological Institute, Department of Ecology and Parasitology, Kornblumenstrasse 13, 76131 Karlsruhe, Germany. Tel: +49 721 6084717. Fax: +49 721 6087655. E-mail: [email protected]

Summary

The European shore crab, Carcinus maenas, is one of the most successful marine invasive species. Its success has been in part attributed to the loss of parasites, rekindling an interest in host-parasite interactions and impacts on host fitness in this crab. In the present study, we investigated C. maenas populations from Europe, South Africa and Australia for parasites, and assessed their impact on the fitness of male crabs. For the shore crab, testes weight along with success in mating competition is traded off against other life-history traits. We therefore used this parameter as an indicator both for reproductive fitness and a possible resource trade-off in response to parasite infestation. In the native range, crabs infested with Sacculina carcini showed significantly lower testes weight than uninfected crabs. However, helminth parasites did not generally cause reduced testes weights. Crab populations from South Africa and Australia were either parasitized at very low prevalences, or were completely parasite free. However, no population level effect of this parasite release was reflected in testes weight. These findings do not support a severe fitness impact of helminth parasites on C. maenas, which questions the role of parasites on its population dynamics, both in the native area and for invasive success.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agnew, P., Koella, J. C. and Michalakis, Y. (2000). Host life history responses to parasitism. Microbes and Infection 2, 891896. doi: 10.1016/S1286-4579(00)00389-0.CrossRefGoogle ScholarPubMed
Armonies, W. and Hartke, D. (1995). Floating of mud snails Hydrobia ulvae in tidal waters of the Wadden Sea, and its implications in distribution patterns. Helgoländer Meeresuntersuchungen 49, 529538. doi: 10.1007/BF02368380.CrossRefGoogle Scholar
Dobson, A. P. (1988). Restoring island ecosystems: the potential of parasites to control introduced mammals. Conservation Biology 2, 3139. doi: 10.1111/j.1523-1739.1988.tb00333.x.CrossRefGoogle Scholar
Ewald, P. W. (1995). The evolution of virulence: a unifying link between parasitology and ecology. The Journal of Parasitology 81, 659669.CrossRefGoogle ScholarPubMed
Fenchel, T. (1975). Factors determining the distribution patterns of the mud snails (Hydrobiidae). Oecologia 20, 117. doi: 10.1007/BF00364318.CrossRefGoogle ScholarPubMed
Grosholz, E. D. & Ruiz, G. M. (2003). Biological invasions drive size increases in marine and estuarine invertebrates. Ecology Letters 6, 700705. doi: 10.1046/j.1461-0248.2003.00495.x.CrossRefGoogle Scholar
Gurney, R. H. (2006). Potential biological control agents for the European green crab, Carcinus maenas, in Australian waters. Ph.D. thesis, University of Tasmania.Google Scholar
Gurney, R. H., Nowak, B. F., Dykova, I. and Kuris, A. M. (2004). Histopathological effects of trypanorhynch metacestodes in the digestive gland of a novel host, Carcinus maenas (Decapoda). Diseases of Aquatic Organisms 58, 6369. doi: 10.3354/dao058063.CrossRefGoogle ScholarPubMed
Haye, P. A. and Ojeda, F. P. (1998). Metabolic and behavioral alterations in the crab Hemigrapsus crenulatus (Milne-Edwards 1837) induced by its acanthocephalan parasite Profilicollis antarcticus (Zdzitowiecki 1985). Journal of Experimental Marine Biology and Ecology 228, 7382. doi: 10.1016/S0022-0981(98)00007-0.CrossRefGoogle Scholar
Høeg, J. T. (1995). The biology and life cycle of the rhizocephala (cirripedia). Journal of the Marine Biological Association of the United Kingdom 75, 517550. doi: 10.1017/S0025315400038996.CrossRefGoogle Scholar
Hurd, H. (2001). Host fecundity reduction: a strategy for damage limitation? Trends in Parasitology 17, 363368. doi: 10.1016/S1471-4922(01)01927-4.CrossRefGoogle ScholarPubMed
Irvine, R. J., Corbishley, H., Pilkington, J. G. and Albon, S. D. (2006). Low-level parasitic worm burdens may reduce body condition in free-ranging red deer (Cervus elaphus). Parasitology 133, 465475. doi: 10.1017/S0031182006000606.CrossRefGoogle ScholarPubMed
Kashenko, S. D. and Korn, O. M. (2002). Effects of temperature and salinity on the larvae of two species of rhizocephalan (Crustacea: Cirripedia). Invertebrate Reproduction and Development 41, 179184.CrossRefGoogle Scholar
Lack, D. (1954). The Natural Regulation of Animal Number. Clarendon Press, Oxford, UK.Google Scholar
Latham, A. D. M. and Poulin, R. (2002 a). Field evidence of the impact of two acanthocephalan parasites on the mortality of three species of New Zealand shore crabs (Brachyura). Marine Biology 141, 11311139. doi: 10.1007/s00227-002-0913-7.Google Scholar
Latham, A. D. M. and Poulin, R. (2002 b). Effect of acanthocephalan parasites on hiding behaviour in two species of shore crabs. Journal of Helminthology 76, 323326. doi: 10.1079/JOH2002139.CrossRefGoogle ScholarPubMed
Lauckner, G. (1986). Einfluss von Trematodeninfestationen auf Überleben und Wachstum der Strandkrabbe Carcinus maenas. Jahresbericht der Biologischen Anstalt Helgolands, 1112.Google Scholar
Lauckner, G. and Söhl, M. (1990). Populationsdynamik parasitengeschädigter Strandkrabben (Carcinus maenas) im Nordsylter Wattenmeer. Jahresbericht der Biologischen Anstalt Helgolands, 1922.Google Scholar
McKnight, A., Mathews, L. M., Avery, R. and Lee, K. T. (2000). Distribution is correlated with color phase in green crabs, Carcinus maenas (Linnaeus, 1758) in Southern New England. Crustaceana 73, 763768. doi: 10.1163/156854000504787.Google Scholar
Mouritsen, K. T., Jensen, T. and Jensen, K. T. (1997). Parasites on an intertidal Corophium-bed: factors determining the phenology of microphallid trematodes in the intermediate host populations of the mud-snail Hydrobia ulvae and the amphipod Corphium volutator. Hydrobiologia 355, 6170. doi: 10.1023/A:1003067104516.CrossRefGoogle Scholar
Petersen, I. K., Pihl, S., Hounisen, J. P., Holm, T. E., Clausen, P., Therkildsen, O. and Christensen, T. K. (2006). Landsdækkende optaellinger af vandfugle, januar og februar 2004. Danmarks Miljøundersøgelser, 76 s. Faglig rapport fra DMU nr. 606. http://www2.dmu.dk/Pub/FR606.pdf.Google Scholar
Plaistow, S. J., Troussard, J. P. and Cézilly, F. (2001). The effect of the acanthocephalan parasite Pomphorhynchus laevis on the lipid and glycogen content of its intermediate host Gammarus pulex. International Journal for Parasitology 31, 346351. doi: 10.1016/S0020-7519(01)00115-1.CrossRefGoogle ScholarPubMed
Reid, D. G. and Aldrich, J. C. (1989). Variations in responses to environmental hypoxia of different colour forms of the shore crab Carcinus maenas (L.). Comparative Biochemistry and Physiology 92A, 535539. doi: 10.1016/0300-9629(89)90361-7.CrossRefGoogle Scholar
Reid, D. G., Abelló, P., McGaw, I. J. and Naylor, E. (1989). Phenotypic variation in sympatric crab populations. In Phenotypic Responses and Individuality in Aquatic Ectotherms (ed. Aldrich, J. C.), pp. 8996. JAPAGA, Dublin, Eire.Google Scholar
Rubiliani, C. (1983). Action of a rhizocephalan on the genital activity of host male crabs: characterization of a parasitic secretion inhibiting spermatogenesis. International Journal of Invertebrate Reproduction 6, 137147.CrossRefGoogle Scholar
Rubiliani-Durozoi, M., Rubiliani, C. and Payen, G. G. (1980). Déroulement des gamétogenèses chez les crabes Carcinus maenas (L.) et C. mediterraneus Czerniavsky parasités par la Sacculine. International Journal of Invertebrate Reproduction 2, 107120.CrossRefGoogle Scholar
Schärer, L., Ladurner, P. and Rieger, R. M. (2004). Bigger testes do work more: experimental evidence that testis size reflects testicular cell proliferation activity in the marine invertebrate, the free-living flatworm Macrostomum sp. Behavioral Ecology and Sociobiology 56, 420425. doi: 10.1007/s00265-004-0802-9.CrossRefGoogle Scholar
Sheldon, B. C. and Verhulst, S. (1996). Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology and Evolution 11, 317321. doi: 10.1016/0169-5347(96)10039-2.CrossRefGoogle ScholarPubMed
Smith, L. D. and Hines, A. H. (1991). Autotomy in blue crab (Callinectes sapidus Rathbun) populations: geographic, temporal, and ontogenetic variation. Biological Bulletin 180, 416431.CrossRefGoogle ScholarPubMed
Styrishave, B., Rewitz, K. and Andersen, O. (2004). Frequency of moulting by shore crabs Carcinus maenas (L.) changes their colour and their success in mating and physiological performance. Journal of Experimental Marine Biology and Ecology 313, 317336. doi: 10.1016/j.jembe.2004.08.013.CrossRefGoogle Scholar
Thieltges, D. W., Hussel, B., Herrmann, J., Jensen, K. T., Krakau, M., Taraschewski, H. and Reise, K. (2008). Parasites in the northern Wadden Sea: a conservative ecosystem component over 4 decades. Helgoland Marine Research 62, 3747. doi: 10.1007/s10152-007-0091-6.CrossRefGoogle Scholar
Thomas, F., Adamo, S. and Moore, J. (2005). Parasitic manipulation: where are we and where should we go? Behavioural Processes 68, 185199. doi: 10.1016/j.beproc.2004.06.010.CrossRefGoogle ScholarPubMed
Tolley, S. G., Winstead, J. T., Haynes, L. and Volety, A. K. (2006). Influence of salinity on prevalence of the parasite Loxothylacus panopaei in the xanthid Panopeus obesus in SW Florida. Diseases of Aquatic Organisms 70, 243250. doi: 10.1016/0169-5347(96)10039-2.CrossRefGoogle ScholarPubMed
Torchin, M. E., Lafferty, K. D. and Kuris, A. M. (2001). Release from parasites as natural enemies: increased performance of a globally introduced marine crab. Biological Invasions 3, 333345. doi: 10.1023/A:1015855019360.CrossRefGoogle Scholar
Vivarès, C. P. and Cuq, J. L. (1981). Physiological and metabolic variations in Carcinus mediterraneus (Crustacea: Decapoda) parasitized by Thelohania maenadis(Microspora: Microsporida): an ecophysiopathological approach. Journal of Invertebrate Pathology 37, 3846.CrossRefGoogle Scholar
Webster, J. P. and Woolhouse, M. E. J. (1999). Cost of resistance: relationship between reduced fertility and increased resistance in a snail-schistosome host-parasite system. Proceedings of the Royal Society of London, B 266, 391396. doi: 10.1098/rspb.1999.0650.CrossRefGoogle Scholar
Zuk, M. and Stoehr, A. M. (2002). Immune defense and host life history. The American Naturalist 160, 922. doi: 10.1086/342131.CrossRefGoogle ScholarPubMed