Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T08:39:25.233Z Has data issue: false hasContentIssue false

Oleic acid is indispensable for intraerythrocytic proliferation of Plasmodium falciparum

Published online by Cambridge University Press:  05 July 2007

F. MI-ICHI
Affiliation:
Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
S. KANO
Affiliation:
Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
T. MITAMURA*
Affiliation:
Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
*
*Corresponding author: Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan. Tel: +81-3-3202-7181 ext. 2871. Fax: +81-3-3202-7364. E-mail: [email protected]

Summary

Serum-derived fatty acids are essential for the intraerythrocytic proliferation of Plasmodium falciparum in humans. We previously reported that only limited combinations of fatty acids can support long-term parasite culture, and palmitic acid (C16:0)/oleic acid (C18:1, n-9), palmitic acid (C16:0)/vaccenic acid (C18:1, n-7), or stearic acid (C18:0) are required in these combinations, implying that these fatty acids are key molecules for intraerythrocytic parasite growth (Mi-Ichi et al.2006). Here, we analysed profiles of parasitaemia changes as well as morphologies during the erythrocytic cycle and confirmed the importance of C16:0 and C18:1, n-9. We also provide evidence that C18:1, n-9 but not other C18 monoenoic or dienoic acids maintain the synchronicity of parasite development in serum-free medium when paired with C16:0, resulting in maintained exponential growth. Thus, C18:1, n-9 is indispensable for the intraerythrocytic proliferation of P. falciparum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhasin, V. K. and Trager, W. (1984). Gametocyte-forming and non-gametocyte-forming clones of Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene 33, 534537.CrossRefGoogle ScholarPubMed
Hanada, K., Mitamura, T., Fukasawa, M., Magistrado, P. A., Horii, T. and Nishijima, M. (2000). Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum. The Biochemical Journal 346, 671677.CrossRefGoogle ScholarPubMed
Holz, G. G. Jr. (1977). Lipids and the malarial parasite. Bulletin of the World Health Organization 55, 237248.Google ScholarPubMed
Maurin, A. C., Chavassieux, P. M., Vericel, E. and Meunier, P. J. (2002). Role of polyunsaturated fatty acids in the inhibitory effect of human adipocytes on osteoblastic proliferation. Bone 31, 260266. doi: 10.1016/S8756-3282(02)00805-0.CrossRefGoogle ScholarPubMed
Mi-Ichi, F., Kita, K. and Mitamura, T. (2006). Intraerythrocytic Plasmodium falciparum utilize a broad range of serum-derived fatty acids with limited modification for their growth. Parasitology 133, 399410. doi: 10.1017/S0031182006000540.CrossRefGoogle ScholarPubMed
Mitamura, T., Hanada, K., Ko-Mitamura, E. P., Nishijima, M. and Horii, T. (2000). Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. Parasitology International 49, 219229. doi: 10.1016/S1383-5769(00)00048-9.CrossRefGoogle ScholarPubMed
Palacpac, N. M., Hiramine, Y., Mi-Ichi, F., Torii, M., Kita, K., Hiramatsu, R., Horii, T. and Mitamura, T. (2004). Developmental stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes. Journal of Cell Science 117, 14691480. doi: 10.1242/10.1242/jcs.00988.CrossRefGoogle ScholarPubMed
Stokes, M. E., Davis, C. S. and Koch, G. G. (1995). Categorical Data Analysis Using the SAS® System. SAS Institute Inc., Cary, NC.Google Scholar
Surolia, N. and Surolia, A. (2001). Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nature Medicine 7, 167173. doi: 10.1038/84612.CrossRefGoogle ScholarPubMed
Vial, H. J. and Ancelin, M. L. (1998). Malarial lipids. In Malaria: Parasite Biology, Pathogenesis, and Protection (ed. Sherman, I. W.), pp. 159175. ASM Press, Washington, D.C.Google Scholar
Vial, H. J., Thuet, M. J. and Philippot, J. R. (1982). Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures. The Journal of Protozoology 29, 258263.CrossRefGoogle ScholarPubMed