Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T21:39:25.776Z Has data issue: false hasContentIssue false

Observations on the implications of pathology induced by experimental schistosomiasis in baboons in evaluating the development of resistance to challenge infection

Published online by Cambridge University Press:  06 April 2009

R. F. Sturrock
Affiliation:
Department of Medical Helminthology, London School of Hygiene and Tropical Medicine, Keppel St (Gower St), London WC1E 7HT
B. J. Cottrell
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP
S. Lucas
Affiliation:
Department of Medical Helminthology, London School of Hygiene and Tropical Medicine, Keppel St (Gower St), London WC1E 7HT
G. D. F. Reid
Affiliation:
Institute of Primate Research, P.O. Box 24481, Karen, Kenya
H. M. Seitz
Affiliation:
Institute of Medical Parasitology, University of Bonn, Sigmund Freud Strasse 25, D-5300 Bonn 1, FEG
R. A. Wilson
Affiliation:
Department of Biology, University of York, York YO1 5DD

Summary

Liver samples from 10 Schistosoma mansoni-infected baboons all yielded eggs but neither their egg counts nor duration of infection (< 226 weeks) correlated with the slightly elevated liver collagen levels or minimal histological fibrosis observed. Approximately 10% of inert 9 and 15 μm diameter microspheres injected into the mesenterio veins of 2 baboons with acute, challenge S. mansoni infection reached their lungs (mainly 9 μm microspheres). Lung egg recoveries over 1000 were significantly less common among 175 baboons exposed once to S. monsoni infections than among 56 baboons exposed more than once. Among 221 S. mansoni-and S. haematobium-infected baboons, female worm, total tissue egg and lung egg recoveries were significantly correlated with each other but not with liver or (where available) spleen weights. Liver and spleen weights were strongly correlated with total body weight. Baboons did not develop significant liver fibrosis, even after prolonged schistosome infections. However, some liver ‘leakiness’ developed during acute primary and challenge infections, allowing small inert particles and eggs to pass to the lungs, but this ‘leakiness’ was not associated with resistance to challenge. In contrast to mice, such resistance in baboons cannot, therefore, be explained simply in terms of pathological changes due to previous infections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cheever, A. W. (1968). Conditions affecting the accuracy of potassium hydroxide digestion techniques for counting Schistosoma monsoni eggs in tissues. Bulletin of the World Health Organization 39, 328–31.Google Scholar
Cheever, A. W. & Duvall, R. H. (1974). Single and repeated infections of grivet monkeys with Schistosoma monsoni: parasitological and pathological observations over a 31-month period. American Journal of Tropical Medicine and Hygiene 23, 884–94.CrossRefGoogle Scholar
Cheever, A. W., Kamel, I. A., Elwi, A. M., Mossiman, J. E. & Danner, J. E. (1977). Schistosoma mansoni and S. haematobium infections in Egypt. II. Quantitative parasitology and findings at necropsy. American Journal of Tropical Medicine and Hygiene 26, 702–16.CrossRefGoogle ScholarPubMed
Cheever, A. W., Kuntz, R. E., Myers, B. J., Moore, J. A. & Huang, T. C. (1974). Schistosoma haematobium in african, hamadryad and gelada baboons. American Journal of Tropical Medicine and Hygiene 23, 429–48.CrossRefGoogle Scholar
Cheever, A. W. & Powers, K. P. (1971). Rate of destruction of Schistosoma mansoni eggs in the tissues of rhesus monkeys. American Journal of Tropical Medicine and Hygiene 20, 6976.CrossRefGoogle ScholarPubMed
Damian, R. T. & Chapman, R. W. (1983). The fecundity of Schistosoma monsoni in baboons, with evidence for a sex ratio effect. Journal of Parasitology 69, 987–9.CrossRefGoogle Scholar
Damian, R. T., Green, N. O., Meyer, B. J., Cheever, A. W., Hubbard, W. J., Hawes, E. & Clark, J. D. (1976). Schistosoma mansoni in baboons. III. The course and characteristics of infection with additional observations on immunity. American Journal of Tropical Medicine and Hygiene 25, 299306.CrossRefGoogle ScholarPubMed
Dunn, M. A. (1983). Liver collagen synthesis and degradation in schistosomiasis. Contributions to Microbiology and Immunology 7, 198203.Google ScholarPubMed
Dunn, M. A., Kamel, R., Kamel, I. A., Biempica, L., El Kholy, A., Hait, P. K., Rojkind, M., Warren, K. S. & Mahmoud, A. A. F. (1979). Liver collagen synthesis in schistosomiasis mansoni. Gastroenterology 76, 978–82.CrossRefGoogle ScholarPubMed
Ford, M. J., Bickle, Q. D. & Taylor, M. G. (1984). Immunization of rats against Schistosoma mansoni using irradiated cercariae, lung schistosomula and liver schistosomula. Parasitology 89, 327–44.CrossRefGoogle ScholarPubMed
Gear, J. H. S. (1967). Experimental bilharzia. In Bilharziasis, (ed. F. K. Mostofi), pp. 248–58.CrossRefGoogle Scholar
Georgi, J. R., Wade, S. E. & Dean, D. A. (1986). Attrition and temporal distribution of Schistosoma mansoni and S. haematobium schistosomula in laboratory mice. Parasitology 93, 5570.CrossRefGoogle ScholarPubMed
Houba, V., Sturrock, R. F. & Butterworth, A. E. (1979). Significance of local formation of immune complexes within granulomata of Schistosoma mansoni. Advances in Experimental Medicine and Biology 114, 683–5.CrossRefGoogle Scholar
Kamiya, H. & McLaren, D. J. (1987). Schistosoma mansoni: migration potential of normal and radiation-attenuated parasites in naive guinea pigs. Experimental Parasitology 63, 98107.CrossRefGoogle ScholarPubMed
McHugh, S. M., Coulson, P. S. & Wilson, R. A. (1987 a). Pathologically induced alterations in the dimensions of hepatic portal vasculature of mice infected with Schistosoma mansoni. Parasitology 94, 6980.CrossRefGoogle ScholarPubMed
McHugh, S. M., Coulson, P. S. & Wilson, R. A. (1987 b). The relationship between pathology and resistance to infection with Schistosoma mansoni in mice: a causal mechanism of resistance in chronic infections. Parasitology 94, 8191.CrossRefGoogle ScholarPubMed
Sadun, E. H., von Lichtenberq, F. & Bruce, J. I. (1966). Susceptibility and comparative pathology of ten species of primates exposed to infection with Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 15, 715–18.CrossRefGoogle ScholarPubMed
Sturrock, R. F. (1986). A review of the use of primates in studying human schistosomiasis. Journal of Medical Primatology 15, 267–79.CrossRefGoogle ScholarPubMed
Sturrock, R. F., Butterworth, A. E. & Houba, V. (1976). Schistosoma mansoni in the Kenyan baboon (Papio anubis): parasitological responses of Kenyan baboons to different exposures of a Jocal parasite strain. Parasitology 73, 239–52.CrossRefGoogle ScholarPubMed
Sturrock, R. F., Butterworth, A. E., Houba, V., Karamsadkar, S. D. & Kimani, R. (1978). Schistosoma mansoni in the Kenyan baboon (Papio anubis): the development and predictability of resistance to homologous challenge. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 251–61.CrossRefGoogle ScholarPubMed
Sturrock, R. F., Cottrell, B. J. & Kimani, R. (1984). Observations on the ability of repeated, light exposures to Schistosoma mansoni cercariae to induce resistance to reinfection in Kenyan baboons (Papio anubis). Parasitology 88, 505–14.CrossRefGoogle ScholarPubMed
Sturrock, R. F., Otieno, M., Tarara, R., Kimani, R., Harrison, R. & Else, J. G. (1984). Experimental Schistosoma mansoni infection in vervet monkeys (Cercopithecus aethiops) in Kenya: I. Susceptibility to primary infections. Journal of Helminthology 58, 7992.CrossRefGoogle Scholar
Taylor, M. G., Nelson, G. S., Smith, M. & Andrews, B. J. (1973). Studies on heterologous immunity in schistosomiasis. 7. Observations on the development of acquired homologous and heterologous immunity to Schistosoma mansoni in baboons. Bulletin of the World Health Organization 49, 5765.Google ScholarPubMed
von Lichtenberq, F. & Sadun, E. H. (1968). Experimental production of bilharzial pipe-stem fibrosis in the chimpanzee. Experimental Parasitology 22, 264–78.CrossRefGoogle Scholar
Warren, K. S. (1972). The immunopathogenesis of schistosomiasis: a multidisciplinary approach. Transactions of the Royal Society of Tropical Medicine and Hygiene 66, 417–32.CrossRefGoogle ScholarPubMed
Webbe, G., James, C. & Nelson, G. S. (1974). Schistosoma haematobium in the baboon (Papio anubis). Annals of Tropical Medicine and Parasitology 68, 187203.CrossRefGoogle ScholarPubMed
Webbe, G., James, C., Nelson, G. S., Smithers, S. R. & Terry, R. J. (1976). Acquired resistance to Schistosoma haematobium in the baboon (Papio anubis) after cercarial exposure and adult worm transfer. Transactions of the Royal Society of Tropical Medicine and Hygiene 70, 411–24.Google Scholar
Webbe, G., Sturrock, R. F., James, E. R. & James, C. (1982). Schistosoma haematobium in the baboon (Papio anubis): effect of vaccination with irradiated larvae on the subsequent infection with percutaneously applied cercariae. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 354–60.CrossRefGoogle ScholarPubMed
Wilson, R. A. & Coulson, P. S. (1986). Schistosoma mansoni: dynamics of migration through the vascular system of the mouse. Parasitology 92, 83100.CrossRefGoogle ScholarPubMed
Wilson, R. A., Coulson, P. S. & McHugh, S. M. (1983). A significant part of the concomitant immunity of mice to Schistosoma mansoni is the consequence of a leaky hepatic portal system, not immune killing. Parasite Immunology 5, 595601.CrossRefGoogle Scholar