Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T01:48:59.108Z Has data issue: false hasContentIssue false

Numerical and functional responses to the presence of a competitor – the case of Aggregata sp. (Apicomplexa: Aggregatidae) and Octopicola superba (Copepoda: Octopicolidae)

Published online by Cambridge University Press:  22 October 2013

F. I. CAVALEIRO*
Affiliation:
Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal CIIMAR/CIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
M. J. SANTOS
Affiliation:
Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal CIIMAR/CIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
*
* Corresponding author: Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal. E-mail: [email protected]

Summary

Evidence of interference competition between the eimeriorin coccidian Aggregata sp. and the octopicolid copepod Octopicola superba at the level of the gills of naturally infected Octopus vulgaris is evaluated. Numerical and functional responses are considered for analysis, and the fundamental and realized spatial niches (FSNs and RSNs) are measured as part of the study. While it was not possible to measure the FSN of Aggregata sp., the analysis of the infection levels of O. superba recorded for non-concomitantly and concomitantly infected hosts suggests that the gills and body skin constitute, respectively, the main and accessory sites of infection of the parasite. According to the evidence found, the gills function mainly as an accessory site of infection of Aggregata sp., in specimens in which the caecum and intestine are massively infected. Evidence for a negative interaction between Aggregata sp. and O. superba has been found while controlling for a potential confounding effect of host size. Furthermore, the presence of O. superba on gill lamellae appears to have been negatively affected by the presence of Aggregata sp., while this latter remained mostly undisturbed. The mean number of oocysts of Aggregata sp. in the gills was higher in spring and summer, which were also the seasons presenting the broadest RSN for O. superba.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bocquet, C. and Stock, J. H. (1960). Copépodes parasites d'invertébrés des cotes de la Manche. VII. Sur la présence d‘Octopicola superbus Humes, lichomolgide associé a Octopus, le long des cotes de Bretagne. Archives de Zoologie Expérimentale et Générale 99, Notes et Revue 1, 17.Google Scholar
Budelmann, B. U., Schipp, R. and Boletzky, S. V. (1997). Cephalopoda. In Microscopic Anatomy of Invertebrates (ed. Harrison, F. W. and Kohn, A. J.), pp. 119414. Wiley-Liss, New York, USA.Google Scholar
Bush, A. O., Aho, J. M. and Kennedy, C. R. (1990). Ecological versus phylogenetic determinants of helminth parasite community richness. Evolutionary Ecology 4, 120.Google Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.Google Scholar
Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology 62, 179193.Google Scholar
Deboutteville, M. M. C. D., Humes, A.-G. and Paris, J. (1957). Sur le comportement d‘Octopicola superba Humes, n. g. n. sp. parasite de la Pieuvre Octopus vulgaris Lamarck. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 244, 504506.Google Scholar
Dia, M. A. and Goutschine, A. (1990). Echelle de maturité sexuelle du poulpe (Octopus vulgaris, Cuvier 1797). Bulletin Scientifique du CNROP 21, 16.Google Scholar
Geets, A., Coene, H. and Ollevier, F. (1997). Ectoparasites of the whitespotted rabbitfish, Siganus sutor (Valenciennes, 1835) off the Kenyan Coast: distribution within the host population and site selection on the gills. Parasitology 115, 6979.Google Scholar
Gestal, C. (2000). Epidemiología y Patología de las Coccidiosis en Cefalópodos. Ph.D. dissertation. Universidad de Vigo, Vigo, Spain.Google Scholar
Gestal, C., Abollo, E. and Pascual, S. (2002). Observations on associated histopathology with Aggregata octopiana infection (Protista: Apicomplexa) in Octopus vulgaris . Diseases of Aquatic Organisms 50, 4549.Google Scholar
Hochberg, F. G. (1983). The parasites of cephalopods: a review. Memoirs of the National Museum of Victoria 44, 109145.CrossRefGoogle Scholar
Hochberg, F. G. (1990). Diseases of Mollusca: Cephalopoda. Diseases caused by protistans and metazoans. In Diseases of Marine Animals, Vol. III (ed. Kinne, O.), pp. 47227. Biologische Anstalt Helgoland, Hamburg, Germany.Google Scholar
Holmes, J. C. (1961). Effects of concurrent infections on Hymenolepis diminuta (Cestoda) and Moniliformis dubius (Acanthocephala). I. General effects and comparison with crowding. Journal of Parasitology 47, 209216.Google Scholar
Holmes, J. C. (1973). Site selection by parasitic helminths: interspecific interactions, site segregation, and their importance to the development of helminth communities. Canadian Journal of Zoology 51, 333347.CrossRefGoogle Scholar
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415427.Google Scholar
Mladineo, I. and Jozić, M. (2005). Aggregata infection in the common octopus, Octopus vulgaris (Linnaeus, 1758), Cephalopoda: Octopodidae, reared in a flow-through system. Acta Adriatica 46, 193199.Google Scholar
Mladineo, I. and Bočina, I. (2007). Extraintestinal gamogony of Aggregata octopiana in the reared common octopus (Octopus vulgaris) (Cephalopoda: Octopodidae). Journal of Invertebrate Pathology 96, 261264.CrossRefGoogle ScholarPubMed
Pascual, S., Gestal, C., Estévez, J. M., Rodríguez, H., Soto, M., Abollo, E. and Arias, C. (1996). Parasites in commercially-exploited cephalopods (Mollusca, Cephalopoda) in Spain: an updated perspective. Aquaculture 142, 110.Google Scholar
Pascual, S., González, A. F. and Guerra, A. (2006). Unusual sites of Aggregata octopiana infection in octopus cultured in floating cages. Aquaculture 254, 2123.Google Scholar
Patrick, M. J. (1991). Distribution of enteric helminths in Glaucomys volans L. (Sciuridae): a test for competition. Ecology 72, 755758.CrossRefGoogle Scholar
Poulin, R. (2001). Interactions between species and the structure of helminth communities. Parasitology 122, S3S11.Google Scholar
Poulin, R. (2007 a). Evolutionary Ecology of Parasites, 2nd Edn. Princeton University Press, Princeton, NJ, USA.Google Scholar
Poulin, R. (2007 b). Are there general laws in parasite ecology? Parasitology 134, 763776.CrossRefGoogle ScholarPubMed
Poulin, R. (2013). Explaining variability in parasite aggregation levels among host samples. Parasitology 140, 541546.Google Scholar
Randhawa, H. S. (2012). Numerical and functional responses of intestinal helminths in three rajid skates: evidence for competition between parasites? Parasitology 139, 17841793.Google Scholar
Shaw, D. J. and Dobson, A. P. (1995). Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111S133.Google Scholar
Šimková, A., Desdevises, Y., Gelnar, M. and Morand, S. (2000). Co-existence of nine gill ectoparasites (Dactylogyrus: Monogenea) parasitising the roach (Rutilus rutilus L.): history and present ecology. International Journal for Parasitology 30, 10771088.Google Scholar
Thomas, F., Renaud, F. and Guégan, J. F. (2005). Parasitism and Ecosystems. Oxford University Press, Oxford, UK.Google Scholar
Zar, J. H. (1996). Biostatistical Analysis, 3rd Edn. Prentice Hall, Upper Saddle River, NJ, USA.Google Scholar