Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T08:41:33.075Z Has data issue: false hasContentIssue false

Novel lineages of Giardia intestinalis identified by genetic analysis of organisms isolated from dogs in Australia

Published online by Cambridge University Press:  01 January 1998

P. T. MONIS
Affiliation:
Department of Microbiology and Immunology, The University of Adelaide, Adelaide SA 5005, Australia
R. H. ANDREWS
Affiliation:
Department of Microbiology and Immunology, The University of Adelaide, Adelaide SA 5005, Australia
G. MAYRHOFER
Affiliation:
Department of Microbiology and Immunology, The University of Adelaide, Adelaide SA 5005, Australia
J. MACKRILL
Affiliation:
Department of Microbiology and Immunology, The University of Adelaide, Adelaide SA 5005, Australia
J. KULDA
Affiliation:
Department of Parasitology, Charles University, Prague, Czech Republic
J. L. ISAAC-RENTON
Affiliation:
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver BC, Canada
P. L. EY
Affiliation:
Department of Microbiology and Immunology, The University of Adelaide, Adelaide SA 5005, Australia

Abstract

Infection of suckling mice with Giardia trophozoites recovered from the intestines of 11 dogs autopsied in Central and Southern Australia in each case produced an established isolate. In contrast, only 1 isolate was obtained by inoculation of faecal cysts. The organisms grew poorly in comparison with isolates from humans or non-canine animal hosts. Light microscopy revealed that the trophozoites had median bodies with the ‘claw hammer’ appearance typical of G. intestinalis (syn. G. duodenalis, G. lamblia) but that they differed in shape and nuclear morphology from axenic isolates of human or canine origin. Allozymic analysis of electrophoretic data representing 26 loci and phylogenetic analysis of nucleotide sequences obtained from DNA amplified from the glutamate dehydrogenase locus showed that the 11 isolates examined from Australian dogs were genetically distinct from all isolates of G. intestinalis that have been established previously from humans and animals, and also from G. muris. Both analytical methods placed 10 of the Australian canine isolates into a unique genetic lineage (designated Assemblage C) and the eleventh into a deep-rooted second branch (designated Assemblage D), each well separated from the 2 lineages (Assemblages A and B) of G. intestinalis that encompass all the genotypes known to infect humans. In contrast, 4 axenic isolates derived from dogs in Canada and Europe (the only other isolates to have been established from dogs) have genotypes characteristic of genetic Assemblages A or B. The findings indicate that the novel Giardia identified in these rural Australian dogs have a restricted host range, possibly confined to canine species. The poor success rate in establishing Giardia from dogs in vitro suggests, further, that similar genotypes may predominate as canine parasites world-wide. The absence of such organisms among isolates of Giardia that have been established from humans by propagation in suckling mice indicates that they are unlikely to infect humans. However, infection of humans by those dog-derived genotypes that grow in vitro cannot be excluded.

Type
Research Article
Copyright
1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)