Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T02:41:44.409Z Has data issue: false hasContentIssue false

Neutrophil chemotactic factors secreted from Toxoplasma gondii

Published online by Cambridge University Press:  06 April 2009

M. Nakao
Affiliation:
Department of Medical Zoology, Kobe University School of Medicine, Kobe 650, Japan
E. Konishi
Affiliation:
Department of Medical Zoology, Kobe University School of Medicine, Kobe 650, Japan

Extract

Neutrophil chemotactic activity was detected in the fluid of Toxoplasma gondii cultures by the agarose plate and the Boyden chamber methods. Toxoplasma culture fluid was obtained by incubating the tachyzoites at 37 °C in a 5% CO2 atmosphere for 6 h in Dulbecco's modified Eagle's minimum essential medium containing 10% heat-inactivated foetal calf serum. Soluble extracts from tachyzoites had negligible activity, indicating that the chemotactic factors were metabolites secreted from tachyzoites. The chemotactic activity in Toxoplasma culture fluid depended on the number of tachyzoites and the period of incubation. The substances responsible for neutrophil chemotaxis were two heat-labile peptides with estimated Mr 4·5 and 14 kDa with N-terminal groups free.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyden, S. (1962). The chemotactic effect of antibody and antigen on polymorphonuclear leukocytes. Journal of Experimental Medicine 15, 453–66.CrossRefGoogle Scholar
Catterall, J. R., Black, C. M., Leventhal, J. P., Rizk, N. W., Wachtel, J. S. & Remington, J. S. (1987). Nonoxidative microbicidal activity in text-abstract human alveolar and peritoneal macrophages. Infection and Immunity 55, 1635–40.CrossRefGoogle Scholar
Chinchilla, M., Portilla, E. & Guerrero, O. M. (1986). Rat macrophage activity against Toxoplasma gondii studied by electron microscopy. Revista de Biologia Tropicale 34, 83–8.Google ScholarPubMed
Jones, T. C. & Hirsch, J. (1972). The interaction between Toxoplasma gondii and mammalian cells. Journal of Experimental Medicine 136, 1173–94.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.Google Scholar
McCabe, R. E. & Remington, J. S. (1986). Mechanisms of killing of Toxoplasma gondii by rat peritoneal macrophages. Infection and Immunity 52, 151–5.CrossRefGoogle ScholarPubMed
McLeod, R., Estes, R., Mack, D. G. & McLeod, E. G. (1983). Effects of human alveolar macrophages and peripheral blood monocytes on Toxoplasma gondii. Journal of Infectious Diseases 147, 957.CrossRefGoogle ScholarPubMed
Megran, D. W., Stiver, H. G. & Bowie, W. R. (1985). Complement activation and stimulation of chemotaxis by Chlamydia trachomatis. Infection and Immunity 49, 670–3.CrossRefGoogle ScholarPubMed
Melnic, D. A., Meshulam, T., Manto, A. & Malech, H. L. (1986). Activation of human neutrophils by monoclonal antibody PMN7C3: cell movement and adhesion can be triggered independently from the respiratory burst. Infection and Immunity 67, 1388–94.Google Scholar
Nakao, M. & Konishi, E. (1991). Proliferation of Toxoplasma gondii in human neutrophils in vitro. Parasitology 103, 23–7.CrossRefGoogle ScholarPubMed
Nelson, R. D., Fiegel, V. D. & Simmons, R. L. (1976). Chemotaxis of human polymorphonuclear neutrophils under agarose: morphologic changes associated with the chemotactic response. Journal of Immunology 117, 1676–83.Google Scholar
Nelson, R. D., Quie, P. G. & Simmons, R. L. (1975). Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. Journal of Immunology 115, 1650–6.CrossRefGoogle ScholarPubMed
Register, K. B., Morgan, P. A. & Wyrick, P. B. (1986). Interaction between Chlamydia spp. and human polymorphonuclear leukocytes in vitro. Infection and Immunity 52, 664–70.CrossRefGoogle ScholarPubMed
Schiffmann, E. S., Corcoran, B. A. & Wahl, S. M. (1975 a). N-Formylmethionyl peptides as chemoattractants for leukocytes. Proceedings of the National Academy of Sciences, USA 72, 1059–62.CrossRefGoogle Scholar
Schiffmann, E. S., Showell, H. V., Corcoran, B. A., Ward, P. A., Smith, E. & Becker, E. L. (1975 b). The isolation and partial characterization of neutrophil chemotactic factors from Esherichia coli. Journal of Immunology 114, 1831–7.Google Scholar
Walker, W. S., Barlet, R. L. & Kurtz, H. M. (1969). Isolation and partial characterization of a staphylococcal leukocyte cytotaxin. Journal of Microbiology 97, 1009–11.Google Scholar
Ward, P. A., Lepow, I. H. & Newman, L. J. (1968). Bacterial factors chemotactic for polymorphonuclear leukocytes. American Journal of Pathology 52, 725–36.Google Scholar
Williams, L. T., Synderman, R., Pike, M. C. & Lefkowitz, R. J. (1977). Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proceedings of the National Academy of Sciences, USA 74, 1204–8.CrossRefGoogle ScholarPubMed
Wilson, C. B. & Remington, J. S. (1979). Activity of human blood leukocytes against Toxoplasma gondii. Journal of Infectious Diseases 140, 890–5.Google Scholar