Article contents
Neurophysiology of glutamatergic signalling and anthelmintic action in Ascaris suum: pharmacological evidence for a kainate receptor
Published online by Cambridge University Press: 01 May 1998
Abstract
Electrophysiological and pharmacological techniques were used to study glutamatergic signalling in the parasitic nematode, Ascaris suum. Glutamate or kainate injections into whole worms produced a paralysed quasi-static posture similar to the waveform in behaving worms. The DE2 motorneuron class is a primary target. Several glutamatergic substances produced pronounced conductance increases and depolarization in DE2; domoate and kainate were the most potent agonists tested. Glutamate responses and spontaneous excitatory post-synaptic potentials in DE2 were reversibly blocked in sodium-free saline. DE2 sensitivity to exogenous glutamate was sustained during block of synaptic transmission suggesting that glutamatergic receptors are located on DE2 neurons. The glutamate-induced response was localized to the DE2 dendrite, coincident with the synapses responsible for spontaneous potentials in DE2. Steady-state potentials reached during glutamate superfusion were similar to the reversal potentials for both the spontaneous post-synaptic potentials and glutamate, also suggesting that these potentials may be glutamatergic. Non-N-methyl-D-aspartate receptor antagonists partially blocked spontaneous DE2 excitatory potentials and responses elicited by exogenous glutamate and kainate. This glutamatergic pathway may play a role in nematode locomotory behaviour and account for the paralysing anthelmintic action of excitatory amino acid analogues like kainate and domoate.
- Type
- Research Article
- Information
- Copyright
- 1998 Cambridge University Press
- 16
- Cited by