Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-06T01:23:26.029Z Has data issue: false hasContentIssue false

Neuromuscular physiology and pharmacology of parasitic flatworms

Published online by Cambridge University Press:  06 April 2009

R. A. Pax
Affiliation:
Departments of ZoologyMichigan State University, East Lansing, MI 48824, USA
T. A. Day
Affiliation:
Departments of ZoologyMichigan State University, East Lansing, MI 48824, USA
C. L. Miller
Affiliation:
Departments of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
J. L. Bennett
Affiliation:
Departments of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA

Summary

The trematode and cestode flatworms include numerous parasitic forms of major medical and economic importance. A better knowledge of the neuromuscular physiology of these animals could lead to development of new control measures against these parasites. Since these animals are near the stem from which all other animals have evolved, better knowledge of these animals could also yield valuable information about the early evolution of nerve and muscle systems in the animal kingdom. This review focuses on what is known about the characteristics of the somatic muscle in these animals. The anatomy of the muscles is described along with a review of current information about their electrophysiology, including descriptions of the ion channels present. Also included is a summary of recently acquired data concerning the nature of serotonin, peptide, acetylcholine and glutamate receptors on the membranes of the muscles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, R. S. K., Calow, P. & Olive, P. J. W. (1988). The Invertebrates: A New Synthesis. Oxford: Blackwell Scientific Publishers.Google Scholar
Basch, P. F. & Gupta, B. c. (1988). Immunocytochemical localization of regulatory peptides in six species of trematode parasites. Comparative Biochemistry and Physiology 91C, 565–70.Google Scholar
Bennett, J. L. & Bueding, E. (1971). Localization of biogenic amines in Schistosoma mansoni. Comparative Biochemistry and Physiology 39A, 859–67.CrossRefGoogle Scholar
Blair, K. L., Day, T. A., Lewis, M. C., Bennett, J. L. & Pax, R. A. (1991). Studies on muscle cells isolated from Schistosoma mansoni: a Ca2+-dependent K+ channel. Parasitology 102, 251–8.CrossRefGoogle Scholar
Bouvier, M., Amato, A. & Attwell, D. (1994). Molecular biology and physiology of glutamate transporter. Seminars in the Neurosciences 6, 117–25.CrossRefGoogle Scholar
Bricker, C. S., Pax, R. A. & Bennett, J. L. (1982). Microelectrode studies of the tegument and subtegumental compartments of male Schistosoma mansoni: anatomical location of sources of electrical potentials. Parasitology 85, 149–61.CrossRefGoogle ScholarPubMed
Bueding, E. & Mansour, J. M. (1957). The relationship between inhibition of phosphofructokinase activity and the mode of action of trivalent ogranic antimonials on Schistosoma mansoni. British Journal of Pharmacology 12, 159–65.Google Scholar
Camacho, M., Alsford, S., Jones, A. & Agnew, A. (1995). Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Molecular and Biochemical Parasitology 71, 127–34.Google Scholar
Chance, M. R. A. & Mansour, T. E. (1953). A contribution to the pharmacology of movement in the liver fluke. British Journal of Pharmacology 8, 134–8.Google Scholar
Darlison, M. G., Hutton, M. L. & Harvey, R. J. (1993). Molluscan ligand-gated ion-channel receptors. In Comparative Molecular Neurobiology (ed. Pinchon, Y.), p. 433. Basel: Birkhauser Verlag.Google Scholar
Day, T. A., Bennett, J. L. & Pax, R. A. (1994a). Serotonin and its requirement for maintenance of contractility in muscle fibres isolated from Schistosoma mansoni. Parasitology 108, 425–32.Google Scholar
Day, T. A., Chen, G.-Z., Miller, C., Ming, T., Bennett, J. L. & Pax, R. A. (1996). Cholinergic inhibition of muscle fibres isolated from Schistosoma mansoni (Trematoda: Digenea). Parasitology 113, 5561.Google Scholar
Day, T. A., Kim, E., Bennett, J. L. & Pax, R. A. (1995). Analysis of the kinetics and voltage-dependency of transient and delayed K+ currents in muscle fibers isolated from the flatworm Schistosoma mansoni. Comparative Biochemistry and Physiology 111A, 7987.CrossRefGoogle Scholar
Day, T. A., Maule, A. G., Shaw, C., Halton, D. W., Moore, S., Bennett, J. L. & Pax, R. A. (1994b). Platyhelminth FMRFamide-related peptides (FaRPs) contract Schistosoma mansoni (Trematoda: Digenea) muscle fibres in vitro. Parasitology 109, 455–9.CrossRefGoogle ScholarPubMed
Day, T. A., Orr, N., Bennett, J. L. & Pax, R. A. (1993). Voltage-gated currents in muscle cells of Schistosoma mansoni. Parasitology 106, 471–7.CrossRefGoogle ScholarPubMed
Eklove, H. & Webb, R. A. (1991). The effect of L-glutamate and related agents on adenylate cyclase in the cestode Hymenolepis diminuta. Canadian Journal of Physiology and Pharmacology 69, 2836.CrossRefGoogle ScholarPubMed
Eriksson, K. S., Gustafsson, M. K. & Akerlind, G. (1993). High-performance liquid chromatographic analysis of monoamines in the cestode Diphyllobothrium dendriticum. Parasitology Research 79, 699702.CrossRefGoogle ScholarPubMed
Eriksson, K. S., Maule, A. G., Halton, D. W., Panula, P. A. & Shaw, c. (1995). GABA in the nervous system of parasitic flatworms. Parasitology 110, 339–46.CrossRefGoogle ScholarPubMed
Estey, s. & Mansour, T. (1987). Nature of serotonin-activated adenylate cyclase during development of Schistosoma mansoni. Molecular and Biochemical Parasitology 26, 4760.CrossRefGoogle ScholarPubMed
Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1977). Schistosoma mansoni: direct method for simultaneous recording of electrical and motor activity. Experimental Parasitology 43, 286–94.Google Scholar
Fleming, M. W. (1993). Catecholamines during development of the parasitic nematode, Haemonchus contortus. Comparative Biochemistry and Physiology 104C, 333–4.Google Scholar
Fripp, P. J. (1967). Histochemical localization of esterase activity in schistosomes. Experimental Parasitology 21, 380–90.CrossRefGoogle ScholarPubMed
Gallardo, M. I., Ferrer, M. I. & Sanchez, J. (1994). Presence of an X-ag carrier in frog (Rana esculenta) red blood cells. Journal of Membrane Biology 139, 97102.CrossRefGoogle ScholarPubMed
Grimmelikhuijzen, C. J. P. & Westfall, J. A. (1995). The nervous systems of Cnidarians. In The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach (eds. Breidbach, O. & Kutsch, W.), pp. 724. Boston: Birkhauser Verlag.CrossRefGoogle Scholar
Guilford, H. G. (1961). Gametogenesis, egg-capsule formation, and early miracidial development in the digenetic trematode Halipegus eccentricus Thomas. Journal of Parasitology 47, 757–64.Google Scholar
Gustafsson, M. K. S. (1987). Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitology Research 74, 168–74. and Tissue Research 240, 255–60.Google Scholar
Gustafsson, M. K., Fagerholm, H. P., Halton, D. W., Hanzelova, V., Maule, A. G., Reuter, M. & Shaw, C. (1995). Neuropeptides and serotonin in the cestode, Proteocephalus exiguus: an immunocytochemical study. International Journal for Parasitology 25, 673–82.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S., Wikgren, M. C., Kahri, T. J. & Schot, L. P. C. (1985). Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255–60.CrossRefGoogle ScholarPubMed
Halton, D. W. & Jennings, J. B. (1964). Demonstration of the nervous system in the monogenetic trematode Diplozoon paradoxum Nordmann by the indoxyl acetate method for esterase. Nature 202, 510–11.Google Scholar
Halton, D. W., Maule, A. G., Johnston, C. F. & Fairweather, I. (1987). Occurrence of 5-hydroxytryptamine in the nervous system of a monogenean, Diclidophora merlangi. Parasitology Research 74, 151–4.Google Scholar
Halton, D. W., Maule, A. G., Brennan, G. P., Shaw, C., Stoitsova, S. R. & Johnston, C. F. (1994a). Grillotia erinaceus (Cestoda, Trypanorhyncha): localization of neuroactive substances in the plerocercoid, using confocal and electron-microscopic immunocytochemistry. Experimental Parasitology 79, 410–23.Google Scholar
Halton, D. W. & Morris, G. P. (1969). Occurrence of cholinesterase and ciliated sensory structures in a fish gill-fluke Diclidophora merlangi (Trematoda, Monogenea). Zeitschrift für Parasitenkunde 33, 2130.CrossRefGoogle Scholar
Halton, D. W., Shaw, C., Maule, A. G. & Smart, D. (1994b). Regulatory peptides in helminth parasites. Advances in Parasitology 34, 163227.CrossRefGoogle ScholarPubMed
Hediger, M. A., Kanai, Y., You, G. & Nussberger, S. (1995). Mammalian ion-coupled solute transporters. Journal of Physiology 482, 7S17S.CrossRefGoogle ScholarPubMed
Hille, B. (1992). Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer Associates Inc.Google Scholar
Hillman, G. (1983). The neuropharmacology of schistosomes. Pharmacology and Therapeutics 22, 103–15.Google Scholar
Hoehn, K. & White, T. D. (1990). Glutamate evoked release of endogenous adenosine from rat cortical synaptosomes is mediated by glutamate uptake and not by receptors. Journal of Neurochemistry 54, 1716–24.CrossRefGoogle Scholar
Holmes, D. S. & Fairweather, I. (1984). Fasciola hepatica: The effects of neuropharmacological agents upon in vitro motility. Experimental Parasitology 58, 194208.CrossRefGoogle ScholarPubMed
Hyman, L. H. (1951). The Invertebrates: Platyhelminthes and Rhynchocoela. The Acoelomate Bilateria. New York: McGraw-Hill Book Company, Inc.Google Scholar
Johnson, C. D. & Stretton, A. O. W. (1985). Localization of choline acetyltransferase with identified motoneurons of the nematode, Ascaris. Journal of Neuroscience 5, 1984–92.CrossRefGoogle ScholarPubMed
Johnston, R. N., Shaw, C., Halton, D. W., Verhaert, P. & Baguna, J. (1995). GYIRFamide: a novel FMRFamide-related peptide (FaRP) from the triclad turbellarian, Dugesia tigrina. Biochemical and Biophysical Research Communications 209, 689–97.CrossRefGoogle ScholarPubMed
Kanai, Y. & Hediger, M. A. (1992). Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467–71.CrossRefGoogle ScholarPubMed
Keenan, L. & Koopowitz, H. (1982). Physiology and in situ identification of putative aminergic neurotransmitters in the nervous system of Gyrocotyle fimbriata, a parasitic flatworm. Journal of Neurobiology 13, 921.CrossRefGoogle ScholarPubMed
Kim, E., Day, T., Bennett, J. L. & Pax, R. A. (1995 a). Cloning and functional expression of a Shaker-related voltage-gated potassium channel gene from Schistosoma mansoni (Trematoda: Digenea). Parasitology 110, 171–80.CrossRefGoogle ScholarPubMed
Kim, E., Day, T. A., Marks, N. J., Johnston, R. N., Halton, D. W., Shaw, C., Chen, G.-Z., Bennett, J. L. & Pax, R. A. (1995b). Immunohistochemical localization of a Shaker-related voltage-gated potassium channel protein in Schistosoma mansoni (Trematoda: Digenea). Experimental Parasitology 81, 421–9.CrossRefGoogle ScholarPubMed
Kizawa, Y., Inudoh, S., Arai, Y., Uemura, Y., Ohura, M., Matsura, R., Tssukimura, T. & Murakami, H. (1991). Organic calcium-antagonist-resistant response to FMRFamide on the molluscan smooth muscle. General Pharmacology 22, 959–64.Google Scholar
Latorre, R., Oberhauser, A., Labarca, P. & Alvarez, O. (1989). Varieties of calcium-activated potassium channels. Annual Review of Physiology 51, 385–99.CrossRefGoogle ScholarPubMed
Leake, L. D. & Walker, R. J. (1980). Invertebrate Neuropharmacology. Glasgow: Blackie.Google Scholar
Lingueglia, E., Champigny, G., Lazdunski, M. & Barbary, P. (1995). Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378, 730–3.CrossRefGoogle ScholarPubMed
Lumsden, R. D. & Hildreth, M. B. (1983). The fine structure of adult tapeworms. In Biology of the Eucestoda. (eds. Arme, C. & Pappas, W. C.), pp. 177234. New York: Academic Press.Google Scholar
Lumsden, R. D. & Murphy, W. D. (1980). Morphological and functional aspects of the cestode surface. In Cellular Interactions in Symbiosis and Parasitism, (eds. Cook, C. B., Pappas, W. C. & Rudolph, E. D.), pp. 95130. Columbus: The Ohio State University Press.Google Scholar
Lumsden, R. D. & Specian, R. (1980). The morphology, histology and fine structure of the adult stage of the cyclophyllidean tapeworm Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta (ed. Arai, H. P.), pp. 157280. New York: Academic Press.CrossRefGoogle Scholar
Magee, C. A., Cahir, M., Halton, D. W., Johnston, C. F. & Shaw, C. (1993). Cytochemical observations on the nervous system of adult Corrigia vitta. Journal of Helminthology 67, 189–99.Google Scholar
Mansour, T. E. (1957). The effect of lysergic acid diethylamide, 5-hydroxytryptamine and related compounds on the liver fluke Fasciola hepatica. British Journal of Pharmacology 12, 406–9.Google Scholar
Mansour, T. E. (1984). Serotonin receptors in parasitic worms. Advances in Parasitology 23, 236.Google Scholar
Marks, N. J., Johnson, S. S., Maule, A. G., Halton, D. W., Shaw, C., Geary, T. G., Moore, S. & Thompson, D. P. (1996). Physiological effects of platyhelminth RFamide peptides on muscle-strip preparations of Fasciola hepatica (Trematoda: Digenea). Parasitology, in press.Google Scholar
Marks, N. J., Maule, A. G., Halton, D. W., Shaw, C. & Johnston, C. F. (1993). Distribution and immunochemical characteristics of neuropeptide F (NPF) (Moniezia expansa)-immunoreactivity in Proteocephalus pollanicola (Cestoda: Proteocephalidea). Comparative Biochemistry and Physiology 104C, 381–6.Google Scholar
Maule, A. G., Halton, D. W., Allen, J. & Fairweather, I. (1989a). Studies on motility in vitro of an ectoparasitic monogenean, Diclidophora merlangi. Parasitology 98, 8593.CrossRefGoogle Scholar
Maule, A. G., Halton, D. W., Shaw, C. & Johnston, C. F. (1993 a). The cholinergic, serotoninergic and peptidergic components of the nervous system of Moniezia expansa (Cestoda, Cyclophyllidea). Parasitology 106, 429–40.Google Scholar
Maule, A. G., Shaw, C., Halton, D. W., Curry, W. J. & Thim, L. (1994). RYIRFamide: a turbellarian FMRFamide-related peptide (FaRP). Regulatory Peptides 50, 3743.Google Scholar
Maule, A. G., Shaw, C., Halton, D. W., Johnston, C. F. & Fairweather, I. (1989b). Localization, quantification and characterization of pancreatic polypeptide; immunoreactivity in the parasitic flatworm Diclidophora merlangi and its fish host (Merlangius merlangus). General and Comparative Endocrinology 74, 50–6.Google Scholar
Maule, A. G., Shaw, C., Halton, D. W., Thim, L. D., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1991). Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidia). Parasitology 102, 309–16.Google Scholar
Maule, A. G., Shaw, C., Halton, D. W. & Thim, L. (1993b). GNFFRFamide: a novel FMRFamide-immunoreactive peptide isolated from the sheep tapeworm Moniezia expansa. Biochemical and Biophysical Research Communications 193, 1054–60.Google Scholar
Mckay, D., Halton, D. W., Allen, J. & Fairweather, I. (1989). The effects of cholinergic and serotoninergic drugs on motility in vitro of Haplometra cylindracea (Trematoda: Digenea). Parasitology 99, 241–52.Google Scholar
Mcnall, S. J. & Mansour, T. E. (1984). Novel serotonin receptors in Fasciola: characterization by studies on adenylate cyclase activation and 3H-LSD binding. Biochemical Pharmacology 33, 2789–97.Google Scholar
Mellin, T., Busch, R., Wang, C. & Kath, G. (1983). Neuropharmacology of the parasitic trematode Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 32, 8393.CrossRefGoogle ScholarPubMed
Northrup, J. K. & Mansour, T. E. (1978). Adenylate cyclase from Fasciola hepatica I. Ligand specificity of adenylate cyclase-coupled serotonin receptors, II. Role of guanine nucleotides in coupling adenylate cyclase and serotonin receptors. Molecular Pharmacology 14, 804–33.Google Scholar
Paasonen, M. K. & Vartianen, A. (1958). Pharmacological studies on the body wall musculature of cat tapeworm Taenia taeniaformis. Acta Pharmacalogica Toxicologica 15, 2936.CrossRefGoogle Scholar
Pan, J. Z., Halton, D. W., Shaw, C., Maule, A. G. & Johnston, C. F. (1994). Serotonin and neuropeptide immunoreactivities in the intramolluscan stages of three marine trematode parasites. Parasitology Research 80, 388–95.CrossRefGoogle ScholarPubMed
Pax, R. A. & Bennett, J. L. (1991). Neurobiology of parasitic platyhelminthes: possible solutions to the problems of correlating structure and function. Parasitology 102, S319.Google Scholar
Pax, R. A. & Bennett, J. L. (1992). Neurobiology of parasitic flatworms: how much ‘neuro’ in the biology ? Journal of Parasitology 78, 194205.Google Scholar
Pax, R. A., Bricker, C. S., Thompson, D. P., Semeyn, D. R. & Bennett, J. L. (1983). Neurophysiology of adult male Schistosoma mansoni. Pharmacology and Therapeutics 22, 117–25.CrossRefGoogle ScholarPubMed
Pax, R. A., Siefker, C. & Bennett, J. L. (1984). Schistosoma mansoni: differences in acetylcholine, dopamine and serotonin control of circular and longitudinal parasite muscle. Experimental Parasitology 58, 314–24.CrossRefGoogle Scholar
Pospekhova, N. A., Shisov, B. A. & Pluzhnikov, L. T. (1989). Histochemical reaction to biogenic amines of the nervous system of the larval and mature cestode Microsomacanthus microskrjabini. Parazitologiia 23, 71–4.Google Scholar
Reuter, M. & Gustafsson, M. K. S. (1989). ‘Neuroendocrine Cells’ in flatworms - progenitors to metazoan neurons? Archives of Histology and Cytology 52, 253–63.Google Scholar
Ribeiro, P. & Webb, R. A. (1983). The occurence and synthesis of octopamine and catecholamines in the cestode Hymenolepis diminuta. Molecular and Biochemical Parasitology 7, 5362.Google Scholar
Ribeiro, P. & Webb, R. A. (1984). The occurrence synthesis and metabolism of 5-hydroxytryptamine and 5-hydroxytryptophan in the cestode Hymenolepis diminuta: a high performance liquid chromatographic study. Comparative Biochemistry and Physiology 79C, 159–64.Google Scholar
Ribeiro, P. & Webb, R. A. (1987). Characterization of serotonin transporter and an adenylate cyclase-linked serotonin receptor in the cestode Hymenolepis diminuta. Life Sciences 40, 755–68.Google Scholar
Ribeiro, P. & Webb, R. A. (1991). Serotonin stimulates protein phosphorylation in the cestode Hymenolepis diminuta. Comparative Biochemistry and Physiology 100C, 483–9.Google Scholar
Richardson, B. P. & Hoyer, D. (1990). Selective agonists and antagonists at 5-hydroxytryptamine receptor subtypes. In Serotonin: From Cell Biology to Pharmacology and Therapeutics (eds. Paoletti, R., Vanhoutte, P. M., Brunello, N. & Maggi, F. M.), pp. 265–76. Dordrecht: Kluwer Academic Publishers.Google Scholar
Rohde, K. (1994). The origins of parasitism in the platyhelminthes. International Journal for Parasitology 24, 1099–115.Google Scholar
Saimi, Y. & Martinac, B. (1989). Calcium-dependent potassium channel in Paramecium studied under patch-clamp. Journal of Membrane Biology 112, 7989.Google Scholar
Saimi, Y. & Webb, R. A. (1990). Acetylcholine-like immunoreactivity in the cestode Hymenolepis diminuta. Brain Research 513, 161–3.CrossRefGoogle Scholar
Sargent, P. B. (1977). Synthesis of acetylcholine by excitatory motoneurons in the central nervous system of the leech. Journal of Neurophysiology 40, 553–60.CrossRefGoogle ScholarPubMed
Schardein, J. L. & Waitz, J. A. (1965). Histochemical studies of esterases in cuticle and nerve cords of four cyclophyllidean cestodes. Journal of Parasitology 51, 516–8.Google Scholar
Silk, M. H. & Spence, I. M. (1969). Ultrastructural studies on the blood fluke Schistosoma mansoni. II. The musculature. South African Journal of Medical Science 34, 1120.Google Scholar
Solis-SOTO, J. M. & De JONG-BRINK, M. (1994). Immunocytochemical study on biologically active neurosubstances in daughter sporocysts and cercariae of Trichobilharzia ocellata and Schistosoma mansoni. Parasitology 108, 301–11.Google Scholar
Sukhdeo, M. V. K. (1992). The behavior of parasitic flatworms in vivo: what is the role of the brain? Journal of Parasitology 78, 231–42.CrossRefGoogle ScholarPubMed
Sukhdeo, M. V. K., Hsu, S. C., Thompson, C. S. & Mettrick, D. F. (1984). Hymenolepis diminuta: behavioural effects of 5-hydroxytryptamine, acetylcholine, histamine and somatostatin. Journal of Parasitology 70, 682–8.Google Scholar
Sukhdeo, M. V. K. & Mettrick, D. F. (1987). Parasitic behaviour: understanding platyhelminth responses. Advances in Parasitology 26, 73144.Google Scholar
Sukhdeo, S. & Sukhdeo, M. V. K. (1988). Immunohistochemical and electrochemical detection of serotonin in the nervous system of Fasciola hepatica, a parasitic flatworm. Brain Research 463, 5762.CrossRefGoogle ScholarPubMed
Sukhdeo, S., Sukhdeo, M. V. K. & Mettrick, D. F. (1988). Histochemical localization of acetylcholinesterase in the cerebral ganglia of Fasciola hepatica, a parasitic flatworm. Journal of Parasitology 74, 1023–32.CrossRefGoogle ScholarPubMed
Tanaka, K. (1994). Pharmacological characterization of a cloned rat glutamate transporter (GluT-1). Molecular Brain Research 21, 167–70.CrossRefGoogle ScholarPubMed
Tembe, E. A., Holden-DYE, L., Smith, S. W. G., Jacques, P. A. & Walker, R. J. (1993). Pharmacological profile of the 5-hydroxytryptamine receptor of Fasciola hepatica body wall muscle. Parasitology 106, 6773.Google Scholar
Terada, M., Ishii, A. I., Kino, H. & Sano, M. (1982). Studies on chemotherapy of parasitic helminths. VI. Effects of varioius neuropharmacological agents on motility of Dipylidium caninum. Japanese Journal of Parasitology 32, 479–88.Google Scholar
Thompson, C. S. & Mettrick, D. F. (1989). The effects of 5-hydroxytryptamine and glutamate on muscle contraction in Hymenolepis diminuta (Cestoda). Canadian Journal of Zoology 67, 1257–62.Google Scholar
Thompson, C. S., Sangster, N. C. & Mettrick, D. F. (1986). Cholinergic inhibition of muscle contraction in Hymenolepis diminuta (Cestoda). Canadian Journal of Zoology 64, 2111–15.Google Scholar
Thompson, D. P., Pax, R. A. & Bennett, J. L. (1982).Microelectrode studies of the tegument and subtegumental compartments of male Schistosoma mansoni: an analysis of electrophyisiological properties. Parasitology 85, 163–78.Google Scholar
Tomosky, T., Bennett, J. L. & Bueding, E. (1974). Tryptaminergic and dopaminergic responses of Schistosoma mansoni. Journal of Pharmacology and Experimental Therapeutics 190, 260–71.Google ScholarPubMed
Van DE KA, L. (1991). Neuroendocrine pharmacology of serotoninergic (5-HT) neurons. Annual Review of Neuroscience 31, 289.Google Scholar
Villalobos, C. & Garcia-SANCHO, J. S. (1995). Glutamate increases cytosolic clacium in GH3 pituitary cells acting via a high-affinity glutamate transporter. Federation of European Biochemical Societies 9, 815–19.CrossRefGoogle Scholar
Walker, R. J. & Holden-DYE, L. (1989). Commentary on the evolution of transmitters, receptors and ion channels in invertebrates. Comparative Biochemistry and Physiology 93A, 2539.CrossRefGoogle Scholar
Walker, R. J. & Vehovszky, A. (1990). 5-Hydroxytryptamine (5-HT) receptor subtypes in invertebrates. In Serotonin: From Cell Biology to Pharmacology and Therapeutics (eds. Paoletti, R., Vanhoutte, P. M., Brunello, N. & Maggi, F. M.), pp. 283–8. Dordrecht: Kluwer Academic Publishers.Google Scholar
Ward, S. M., Allen, J. M. & Mckerr, G. (1986). Neuromuscular physiology of Grillotia erinaceus metacestdoes; (Cestoda: Trypanorhyncha) in vitro. Parasitology 93, 121–32.Google Scholar
Ward, S. M., Allen, J. M. & Mckerr, G. (1992). Physiology of obliquely striated muscle fibres within Grillotia erinaceus metacestodes (Cestoda: Trypanorhyncha). Parasitology 104, 337–46.Google Scholar
Ward, S. M., Mckerr, G. & Allen, J. M. (1986). Structure and ultrastructure of muscle systems within Grillotia erinaceus metacestodes (Cestoda:Trypanorhyncha). Parasitology 93, 587–97.Google Scholar
Webb, R. A. (1977). The organization and fine structure of the muscle of the scolex of the cysticeroid of Hymenolepis microstoma. Journal of Morphology 154, 339–56.Google Scholar
Webb, R. A. (1987). Innervation of muscle in the cestode Hymenolepis microstoma. Canadian Journal of Zoology 65, 928–35.Google Scholar
Webb, R. A. (1988). Release of exogenously supplied [3H] glutamate and endogenous glutamate from tissue slices of the cestode Hymenolepis diminuta. Canadian Journal of Physiology and Pharmacology 66, 889–94.Google Scholar
Webb, R. A. & Eklove, H. (1989). Demonstration of intense gluatmate-like immunoreactivity in the longitudinal nerve cords of the cestode Hymenolepis diminuta. Parasitology Research 75, 545–8.CrossRefGoogle ScholarPubMed
Wikgren, M., Reuter, M. & Gustafsson, M. K. S. (1986). Neuropeptides in free-living and parasitic flatworms (Platyhelminthes): an immunocytochemical study. Hydrobiologica 1, 936–44.Google Scholar