Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T07:52:09.923Z Has data issue: false hasContentIssue false

Neurobiology of arthropod parasites

Published online by Cambridge University Press:  06 April 2009

I. D. Harrow
Affiliation:
Animal Health Discovery, Pfizer Central Research, Sandwich, Kent CT13 9NJ
K. A. F. Gration
Affiliation:
Animal Health Discovery, Pfizer Central Research, Sandwich, Kent CT13 9NJ
N. A. Evans
Affiliation:
Animal Health Discovery, Pfizer Central Research, Sandwich, Kent CT13 9NJ

Extract

Many medically important diseases of man are caused by blood-sucking arthropods which serve as vectors for a wide range of viral, bacterial, protozoal and nematode infections (Table 1). Furthermore, serious economic losses are caused by the numerous arthropod parasites which infect domesticated animals (for examples, see Table 2). Among these the ixodid hard ticks are particularly important and it has been estimated that the global cost of hard tick infections is $7000 million per annum (F.A.O., 1984). Not surprisingly, there have been strenuous efforts to control infections caused by arthropods.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, P. W., Binnington, K. C. & Roulston, R. J. (1974). High monoamine oxidase activity in the tick Boophilus microplus, and inhibition by chlordimeform and related pesticides. Journal of the Australian Entomological Society 13, 207–10.CrossRefGoogle Scholar
Axelrod, J., Saavedra, J. & Usdin, E. (1976). Tracer amines in the brain. In Tracer Amines and the Brain, vol. 1 (ed. Usdin, E. & Sandler, M.), pp. 120. New York: Marcel Dekker.Google Scholar
Benson, J. A. (1989). Insect nicotinic acetylcholine receptors as targets for insecticides. In Progress and Prospects in Insect Control vol. 43, pp. 5970. British Crop Protection Council.Google Scholar
Berridge, M. J. (1987). Inositol triphosphate and diacylglycerol: two interacting second messengers. Annual Review of Biochemistry 56, 159–93.CrossRefGoogle Scholar
Binnington, K. C. (1986). Ultrastructure of the tick neuroendocrine system. In Morphology, Physiology, and Behavioural Biology of Ticks (ed. Sauer, J. R. & Hair, H. A.), pp. 152–64. Chichester: Ellis Horwood.Google Scholar
Binnington, K. C. & Rice, M. J. (1977). Motor nerve response to a formamidine in Boophilus microplus. Journal of the Australian Entomological Society 16, 80.CrossRefGoogle Scholar
Binnington, K. C. & Rice, M. J. (1982). A technique for recording efferent neurone activity from normal and poisoned cattle ticks [Boophilus microplus (Canestrini)]. Journal of the Australian Entomological Society 21, 161–6.CrossRefGoogle Scholar
Binnington, K. C. & Stone, B. F. (1977). Distribution of catecholamines in the nervous system of the cattle tick Boophilus microplus Canestrini. Comparative Biochemistry and Physiology 58C, 21–8.Google Scholar
Binnington, K. C. & Tatchell, R. J. (1973). The nervous system and neurosecretory cells of Boophilus microplus (Acarini, Ixodidae). Zeitschrift für wissenschaftliche Zoologie 185, 193206.Google Scholar
Blank, R. H. & Osborne, G. O. (1979). Studies on cholinesterase of the mites of Sancassania berlesei (Tyroglyphidae) and Tetranychus urticae (Tetranychidae): substrate-activity relationships and organophosphorus acaricide inhibition. New Zealand Journal of Agricultural Research 33, 491–6.CrossRefGoogle Scholar
Bodnaryk, R. P. (1982). Biogenic amine-sensitive adenylate cyclases in insects. Insect Biochemistry 12, 16.CrossRefGoogle Scholar
Booth, T. F. (1989). Effects of biogenic amines and adrenergic drugs on oviposition in the cattle tick Boophilus: evidence for octopaminergic innervation of the oviduct. Experimental and Applied Acarology 1, 259–66.CrossRefGoogle Scholar
Booth, T. F., Beadle, D. J. & Hart, F. J. (1985). An ultrastructural and physiological investigation of the retractor muscles of Gene's organ in the cattle ticks Boophilus microplus and Amblyomma variegatum. Experimental and Applied Acarology 1, 165–77.CrossRefGoogle Scholar
Breer, H. & Benke, D. (1986). Messenger RNA from insect nervous tissue induces expression of neuronal acetylcholine receptors in Xenopos oocytes. Molecular Brain Research 1, 111–17.CrossRefGoogle Scholar
Casida, J. E. (1955). Comparative enzymology of certain insect acetylcholinesterases in relation to poisoning by organophosphorus insecticides. The Biochemical Journal 60, 487–96.CrossRefGoogle Scholar
Dauterman, W. C. & Mehrotra, K. N. (1963). The N-alkyl group specificity of cholinesterase from the housefly, Musca domestica L., and the two-spotted spider mite, Tetranychus telarius (L.). Journal of Insect Physiology 9, 257–73.CrossRefGoogle Scholar
Devonshire, A. L. & Moores, G. D. (1984). Characterisation of insecticide-insensitive acetylcholinesterase: microcomputer-based analysis of enzyme inhibition in homogenates of individual housefly (Musca domestica) heads. Pesticide Biochemistry and Physiology 21, 341–8.CrossRefGoogle Scholar
Evans, P. D. (1980). Biogenic amines in the insect nervous system. In Advances in Insect Physiology, vol. 15 (ed. Berridge, M. J., Treherne, J. E. & Wigglesworth, V. B.), pp. 317473. London: Academic Press.Google Scholar
Evans, P. D. (1981). Multiple receptor types for octopamine in the locust. Journal of Physiology 318, 99122.CrossRefGoogle ScholarPubMed
Evans, P. D. & Gee, J. D. (1980). Action of formamidine pesticides on octopamine receptors. Nature, London 287, 60–2.CrossRefGoogle ScholarPubMed
Evans, P. D., Robb, S. & Cuthbert, B. A. (1989). Insect neuropeptides: identification, establishment of functional roles and novel target sites for pesticides. Pesticide Science 25, 7183.CrossRefGoogle Scholar
F.A.O. (1984). Ticks and Tick-borne Disease Control. A Practical Field Manual. Rome: Food and Agricultural Organization.Google Scholar
Fawcett, D. W., Binnington, K. C. & Voigt, W. P. (1986). The cell biology of the ixodid tick salivary gland. In Morphology, Physiology, and Behavioural Biology of Ticks (ed. Sauer, J. R. & Hair, H. A.), pp. 2345. Chichester: Ellis Horwood.Google Scholar
Gration, K. A. F., Harrow, I. D. & Martin, R. J. (1986). GABA receptors in parasites of veterinary importance. In Neuropharmacology and Pesticide Action (ed. Ford, M G., Lunt, G. G., Reay, R. C. & Usherwood, P. N. R.), pp. 414–22. Chichester: Ellis Horwood.Google Scholar
Hall, L. M. C. & Spierer, P. (1986). The ACE locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5′ leader. EMBO Journal 5, 2949–54.CrossRefGoogle ScholarPubMed
Halton, D. W., Fairweather, I., Shaw, C. & Johnston, C. F. (1990). Regulatory peptides in parasitic platyhelminths. Parasitology Today 6, 284–90.CrossRefGoogle ScholarPubMed
Harrow, I. D. & Gration, K. A. F. (1985). Mode of action of the anthelmintics, morantel, pyrantel and levamisole on muscle cell membrane of the nematode Ascaris suum. Pesticide Science 16, 662–72.CrossRefGoogle Scholar
Hart, R. J., Beadle, D. J. & Wilson, R. G. (1984). Ultrastructural and electrophysiological studies of a neuromuscular junction in the tick, Amblyomma variegatum. In Acarology VI, vol 1 (ed. Griffiths, D. A. & Bowan, C. E.), pp. 379–86. Chichester: Ellis Horwood.Google Scholar
Hart, R. J., Potter, C., Wright, R. A. & Lea, P. J. (1978). Relationship between the in vivo and in vitro activity of some naturally occurring glutamate analogues on somatic neuromuscular junction of Lucilia sericata. Physiological Entomology 3, 289–95.CrossRefGoogle Scholar
Huang, Z. & Knowles, C. O. (1990). Properties of a quinuclidinyl benzilate binding component in the bulb mite. Comparative Biochemistry and Physiology 95C, 71–7.Google Scholar
Kadir, H. A. & Knowles, C. O. (1989). Oxidative deamination and N-acetylation of biogenic amines by homogenates of bulb mites (Rhizoglyphus echinopus). Comparative Biochemistry and Physiology 94C, 465–8.Google Scholar
Kaufman, W. R. (1978). Actions of some transmitters and their antagonists on salivary secretion in a tick. American Journal of Physiology 235, R7681.Google ScholarPubMed
Kaufman, W. R., Ungarian, S. G. & Noga, A. E. (1986). The effect of avermectins on feeding, salivary fluid secretion, and fecundity in some ixodid ticks. Experimental and Applied Acarology 2, 118.CrossRefGoogle ScholarPubMed
Kaufman, W. R. & Wong, D. L. (1983). Evidence for multiple receptors mediating fluid secretion in salivary glands of ticks. European Journal of Pharmacology 87, 4352.CrossRefGoogle ScholarPubMed
Kebabian, J. W. & Calne, D. B. (1979). Multiple receptors for dopamine. Nature, London 277, 93.CrossRefGoogle ScholarPubMed
Kempton, L. R. C., Willis, R. J., Pillmoor, J. B. & Isaac, R. E. (1990). Tyramine-β-hydroxylase activity in the synganglion of the tick Boophilus microplus (Acari: Ixodidae). In Insect Neurochemistry and Neurophysiology. 1989 (ed. Borkovec, A. B. & Masler, E.P.), pp. 281–4. New Jersey: The Humana Press Inc.Google Scholar
Knipper, M. & Breer, H. (1988). Subtypes of muscarinic receptors in insect nervous system. Comparative Biochemistry and Physiology 90C, 275–80.Google Scholar
Knowles, C. O., McKee, M. J. & Hamed, M. S. (1990). Dopamine and octopamine in whole body extracts of the bulb mite. Experientia 46, 205–7.CrossRefGoogle ScholarPubMed
Lummis, S. C. R. & Sattelle, D. B. (1985). Binding of N-[propionyl-3H]propionylated α-bungarotoxin and L-[benzilic-4-4′-3H]quinuclidinyl benzilate to CNS extracts of the cockroach Periplaneta americana. Comparative Biochemistry and Physiology 80C, 7583.Google Scholar
McEnroe, W. D. (1963). Esterases in the two-spotted spider mite. In Advances in Acarology, vol. 1 (ed. Neagele, J. A.), pp. 214–24. New York, Ithaca: Comstock.Google Scholar
McSwain, J. L., Tucker, J. S., Essenberg, R. C. & Sauer, J. R. (1989). Brain factor induced formation of inositol phosphates in tick salivary glands. Insect Biochemistry 19, 343–9.CrossRefGoogle Scholar
Marshall, J., David, J. A., Darlison, M. G., Barnard, E. A. & Sattelle, D. B. (1988). Pharmacology, cloning and expression of insect nicotinic acetylcholine receptors. In Nicotinic Acetylcholine Receptors in the Nervous System (ed. Clementi, F.), pp. 257–81. Berlin and Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Megaw, M. W. J. & Robertson, H. A. (1974). Dopamine and noradrenaline in the salivary glands and brain of the tick, Boophilus microplus: effect of reserpine. Experientia 30, 1261–2.CrossRefGoogle ScholarPubMed
Mehrotra, K. N. (1961). The occurrence of acetylcholine in the two-spotted spider mite, Tetranychus telarius L. Journal of Insect Physiology 6, 180–4.CrossRefGoogle Scholar
Mehrotra, K. N. (1963). Biochemistry of nerve function in Acarina. In Advances in Acarology, vol. 1 (ed. Neagele, J. A.), pp. 209–13. New York, Ithaca: Comstock.Google Scholar
Morton, D. B. (1984). Pharmacology of the octopamine-stimulated adenylate cyclase of the locust and tick CNS. Comparative Biochemistry and Physiology 78C, 153–8.Google ScholarPubMed
Needham, G. R. & Pannabecker, T. L. (1983). Effects of octopamine, chlordimeform, and demethyl-chlordimeform on amine-controlled tick salivary glands isolated from feeding Amblyomma americanum (L.). Pesticide Biochemistry and Physiology 19, 133–40.CrossRefGoogle Scholar
Nolan, J. & Schnitzerling, H. J. (1975). Characterisation of acetylcholinesterases of acaricide resistant and susceptible stains of the cattle tick Boophilus microplus. I. Extraction of the critical component and comparison with enzyme from other sources. Pesticide Biochemistry and Physiology 5, 178–88.CrossRefGoogle Scholar
Nolan, J. & Schnitzerling, H. J. (1976). Characterisation of acetylcholinesterases of acaricide resistant and susceptible strains of the cattle tick Boophilus microplus. II. The substrate specificity and catalytic efficiency of the critical enzyme component. Pesticide Biochemistry and Physiology 6, 142–7.CrossRefGoogle Scholar
Nolan, J., Schnitzerling, H. J. & Schuntner, C. A. (1972). Multiple forms of acetylcholinesterase from resistant and susceptible strains of the cattle tick, Boophilus microplus (Can.). Pesticide Biochemistry and Physiology 2, 8594.CrossRefGoogle Scholar
Obenchain, F. D. (1974). Neurosecretory system of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). I. Diversity of cell types. Journal of Morphology 142, 433–46.CrossRefGoogle Scholar
Obenchain, F. D. & Oliver, J. H. (1975). Neurosecretory system of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). II. Distribution of secretory cell types, axonal pathways and putative neurohemal-neuroendocrine associations; comparative histological and anatomical implications. Journal of Morphology 145, 269–94.CrossRefGoogle ScholarPubMed
O'Brien, R. D. (1976). Acetylcholinesterase and its inhibition. In Insecticide Biochemistry and Physiology (ed. Wilkinson, C. F.), pp. 271–95. New York: Plenum Press.CrossRefGoogle Scholar
Orchard, I. & Lange, A. B. (1986). Pharmacological profiles of octopamine receptors on the lateral oviducts of the locust Locusta migratoria. Journal of Insect Physiology 32, 741–5.CrossRefGoogle Scholar
O'Shea, M. & Adams, M. (1986). Proctolin: from ‘gut factor’ to model neuropeptide. In Advances in Insect Physiology, vol. 19 (ed. Evans, P. D. & Wigglesworth, V. B.), pp. 128. New York: Academic Press.Google Scholar
Pannabecker, T. & Needham, G. R. (1985). Effects of octopamine on fluid secretion by isolated salivary glands of a feeding Ixodid tick. Archives of Insect Biochemistry and Physiology 2, 217–26.CrossRefGoogle Scholar
Piek, T. (1985). Neurotransmission and neuromodulation of skeletal muscles. In Comparative Insect Physiology, Biochemistry and Pharmacology, vol. 11 (ed. Kerkut, G. A. & Gilbert, L. I.), pp. 55118. New York: Pergamon Press.Google Scholar
Pinnock, R. D., Sattelle, D. B., Gration, K. A. F. & Harrow, I. D. (1988). Actions of potent cholinergic anthelmintics (morantel, pyrantel and levamisole) on an identified insect neurone reveal pharmacological differences between nematode and insect acetylcholine receptors. Neuropharmacology 27, 843–8.CrossRefGoogle Scholar
Price, N. R. (1988). Insecticide-insensitive acetylcholinesterase from a laboratory selected and a field strain of the housefly (Musca domestica) (L.). Comparative Biochemistry and Physiology 90C, 221–4.Google Scholar
Robinson, N. L. (1981). Glutamate as the transmitter at fast and slow neuromuscular junctions of larval Diptera. Journal of Comparative Physiology 144, 139.CrossRefGoogle Scholar
Roddy, C. W., McSwain, J. L., Kocan, K. M., Essenberg, R. C. & Sauer, J. R. (1990). The role of inositol 1,4,5-triphosphate in mobilizing calcium from intracellular stores in the salivary glands of Amblyomma americanum (L.). Insect Biochemistry 20, 83–9.CrossRefGoogle Scholar
Roulston, W. J., Schnitzerling, H. J. & Schuntner, C. A. (1968). Acetylcholinesterase insensitivity in the Biarra strain of the cattle tick Boophilus microplus as a cause of resistance to organophosphorus and carbamate acaricides. Australian Journal of Biological Science 21, 759–67.CrossRefGoogle ScholarPubMed
Roulston, W. J., Schuntner, C. A. & Schnitzerling, H. J. (1966). The activity and organophosphate inhibition of cholinesterase from susceptible and resistant ticks (Acari). Entomologia experimentalis et applicata 19, 619–33.Google Scholar
Sattelle, D. B., Pinnock, R. D. & Limmins, S. C. (1989). Voltage-independent block of a neuronal nicotinic acetylcholine receptor by N-methyl lycaconitine. Journal of Experimental Biology 142, 215–24.CrossRefGoogle Scholar
Sauer, J. R., Mane, S. D., Schmidt, S. P. & Essenberg, R. C. (1986). Molecular basis for salivary fluid secretion in ixodid ticks. In Morphology, Physiology, and Behavioural Biology of Ticks (ed. Sauer, J. R. & Hair, H. A.), pp. 5574. Chichester: Ellis Horwood.Google Scholar
Schmidt, S. P., Essenberg, R. C. & Sauer, J. R. (1981). Evidence for a D1 dopamine receptor in the salivary glands of Amblyomma americanum (L.). Journal of Cyclic Nucleotide Research 7, 375–84.Google ScholarPubMed
Schmidt, S. P., Essenberg, R. C. & Sauer, J. R. (1982). A dopamine-sensitive adenylate cyclase in the salivary glands of Amblyomma americanum (L.). Comparative Biochemistry and Physiology 72C, 914.Google ScholarPubMed
Schramke, M. L., McKnew, R. W., Schmidt, S. P., Essenberg, R. C. & Sauer, J. R. (1984). Changes in dopamine-sensitive adenylate cyclase in salivary glands of female lone star ticks, Amblyomma americanum (L.), during feeding. Insect Biochemistry 14, 595600.CrossRefGoogle Scholar
Schuntner, C. A., Roulston, W. J. & Schnitzerling, H. J. (1968). A mechanism of resistance to organophosphorus acaricides in a strain of the cattle tick Boophilus microplus. Australian Journal of Biological Science 21, 97109.CrossRefGoogle Scholar
Shapiro, R. A., Wakimoto, B. T., Subers, E. M. & Nathanson, N. M. (1989). Characterisation and functional expression in mammalian cells of genomic and cDNA clones encoding a Drosophila muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences, USA 86, 9039–43.CrossRefGoogle ScholarPubMed
Smallman, B. N. & Riddles, P. W. (1977). Choline acetyltransferase in organophosphate-resistant and susceptible strains of the cattle tick Boophilus microplus. Pesticide Biochemistry and Physiology 7, 6777.CrossRefGoogle Scholar
Smallman, B. N. & Schuntner, C. A. (1972). Authentication of the cholinergic system in the cattle tick, Boophilus microplus. Insect Biochemistry 2, 6777.CrossRefGoogle Scholar
Smissaert, H. R., Voerman, S., Oosterbrugge, L. & Renooy, N. (1970). Acetylcholinesterases of organophosphate-susceptible and resistant spider mites. Journal of Agricultural Food Chemistry 18, 6675.CrossRefGoogle ScholarPubMed
Stone, B. F. (1968). Brain cholinesterase activity and its inheritance in cattle tick (Boophilus microplus) strains resistant and susceptible to organophosphorus acaricides. Australian Journal of Biological Science 21, 321–30.CrossRefGoogle ScholarPubMed
Stone, B. F., Binnington, K. C. & Neish, A. L. (1978). Norepinephrine as principal catecholamine in a specific neurone of an invertebrate (Boophilus microplus: Acarina). Experientia 43, 1173–4.CrossRefGoogle Scholar
Tatchell, R. J. (1967). A modified method for obtaining tick oral secretion. Journal of Parasitology 53, 1106–7.CrossRefGoogle ScholarPubMed
Tripathi, R. K. (1978). Isozymic forms of acetylcholinesterase. In Neurotoxic Action of Pesticides and Venom Toxicity (ed. Shankland, D. L., Hollingworth, R. M. & Smyth, T. Jr), pp. 4362. New York: Plenum Publishing Corporation.CrossRefGoogle Scholar
Wong, D. L.-P. & Kaufman, W. R. (1981). Potentiation by spiperone and other butyrophenones of fluid secretion by isolated salivary glands of ixodid ticks. European Journal of Pharmacology 73, 163–73.CrossRefGoogle ScholarPubMed
Yamamura, H. I. & Snyder, S. H. (1974). Muscarinic cholinergic receptor binding in the longitudinal muscle of the guinea-pig ileum with [3H]quinuclidinyl benzilate. Molecular Pharmacology 10, 861–7.Google Scholar
Zingde, S., Rodrigues, V., Joshi, S. M. & Krishnan, K. S. (1983). Molecular properties of Drosophila acetylcholinsterase. Journal of Neurochemistry 41, 1243–52.CrossRefGoogle Scholar