Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T05:13:09.409Z Has data issue: false hasContentIssue false

Nestling development and the timing of tick attachments

Published online by Cambridge University Press:  05 January 2012

D. J. A. HEYLEN*
Affiliation:
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
J. WHITE
Affiliation:
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
J. ELST
Affiliation:
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
I. JACOBS
Affiliation:
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
C. VAN DE SANDE
Affiliation:
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
E. MATTHYSEN
Affiliation:
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
*
Corresponding author: Tel : +32 3 265 34 70. Fax : +32 3 265 34 74. E-mail: [email protected]

Summary

Parasites exposed to fast-developing hosts experience a variety of conditions over a short time period. Only few studies in vertebrate-ectoparasite systems have integrated the timing of ectoparasite infestations in the host's development into the search for factors explaining ectoparasite burden. In this study we examined the temporal pattern of attachment in a nidicolous tick (Ixodes arboricola) throughout the development of a songbird (Parus major). In the first experiment, we exposed bird clutches at hatching to a mix of the 3 tick instars (larvae, nymphs and adults), and monitored the ticks that attached in relation to the average broods' age. In a complementary experiment we focused on the attachment in adult female ticks – the largest and most significant instar for the species' reproduction – after releasing them at different moments in the nestlings’ development. Our observations revealed a positive association between the size of the attached instar and the broods' age. Particularly, adult females were less likely to be found attached to recently hatched nestlings, which contrasts with the smaller-sized larvae and nymphs. These differences suggest either an infestation strategy that is adapted to host physiology and development, or a result of selection by the hosts' anti-tick resistance mechanisms. We discuss the implications of our results in terms of tick life-history strategies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apanius, V. (1998). Ontogeny of immune function. In Avian Growth and Development: Evolution Within the Altricial-Precocial Spectrum (ed. StarckJ. M. a. R., R. E. J. M. a. R., R. E.), pp. 203222. Oxford University Press, Oxford, UK.Google Scholar
Arthur, D. R. (1963). British Ticks. Butterworths, London, UK.Google Scholar
Balashov, Y. S. (1972). Bloodsucking ticks (Ixodidea) – vectors of diseases of man and animals. Miscellaneous Publications of the Entomological Society of America 8, 159376.Google Scholar
Bize, P., Jeanneret, C., Klopfenstein, A. and Roulin, A. (2008). What makes a host profitable? Parasites balance host nutritive resources against immunity. American Naturalist 171, 107118.Google Scholar
Burtt, E. H., Chow, W. and Babbitt, G. A. (1991). Occurence and demography of mites of tree swallow, house wren and eastern bluebird nests. In Bird-Parasite Interactions: Ecology, Evolution and Behaviour (ed. Loye, J. E. and Zuk, M.), pp. 104122. Oxford University Press, Oxford, UK.Google Scholar
Christe, P., Giorgi, M. S., Vogel, P. and Arlettaz, R. (2003). Differential species-specific ectoparasitic mite intensities in two intimately coexisting sibling bat species: resource-mediated host attractiveness or parasite specialization? Journal of Animal Ecology 72, 866872.CrossRefGoogle Scholar
Christe, P., Richner, H. and Oppliger, A. (1996). Of great tits and fleas: Sleep baby sleep. Animal Behaviour 52, 10871092.CrossRefGoogle Scholar
Clayton, D. H., Jennifer, A. H., Koop, J. A. H., Harbison, C. W., Brett, R. M., Moyer, B. R. and Bush, S. E. (2010). How birds combat ectoparasites. The Open Ornithology Journal 3, 4171.Google Scholar
Clayton, D. H. and Moore, J. (1997). Host-Parasite Evolution: General Principles and Avian Models. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data, 1st Edn.Chapman and Hall, London, UK.Google Scholar
Davison, F., Kaspers, B. and Schat, K. A. (2008). Avian Immunology, Elsevier, London, UK.Google Scholar
Donze, G., McMahon, C. and Guerin, P. M. (2004). Rumen metabolites serve ticks to exploit large mammals. Journal of Experimental Biology 207, 42834289.CrossRefGoogle ScholarPubMed
Duffy, D. C. and Campos de Duffy, M. J. (1986). Tick parasitism at nesting colonies of Blue-footed. Boobies in Peru and Galapagos. Condor 88, 242244.CrossRefGoogle Scholar
Edman, J. D. and Scott, T. W. (1987). Host defensive behaviour and the feeding success of mosquitoes. Insect Science and Its Application 8, 617622.Google Scholar
Elliott, S. L., Blandford, S. and Thomas, M. B. (2002). Host-pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proceedings of the Royal Society of London, B 269, 15991607.CrossRefGoogle Scholar
Fielden, L. J., Rechav, Y. and Bryson, N. R. (1992). Acquired immunity to larvae of Amblyomma marmoreum and A. hebraeum by tortoises, guinea-pigs and guinea-fowl. Medical and Veterinary Entomology 6, 251254.CrossRefGoogle Scholar
Fitze, P. S., Tschirren, B. and Richner, H. (2004). Life history and fitness consequences of ectoparasites. Journal of Animal Ecology 73, 216226.CrossRefGoogle Scholar
Gosler, A. (1993). The Great Tit, Hamlyn, London, UK.Google Scholar
Harper, G. H., Marchant, A. and Boddington, D. H. (1992). The ecology of the hen flea Ceratophyllus gallinae and the moorhen flea Dasypsyllus gallinulae in nestboxes. Journal of Animal Ecology 61, 317327.CrossRefGoogle Scholar
Harrison, G. J. and Harrison, L. R. (1986). Clinical Avian Medicine, Saunders, London.Google Scholar
Hawlena, H., Abramsky, Z. and Krasnov, B. R. (2005). Age-biased parasitism and density-dependent distribution of fleas (Siphonaptera) on a desert rodent. Oecologia 146, 200208.Google Scholar
Heylen, D. J. A. (2011). Parasite-host interactions between ticks and hole-breeding songbirds. Ph.D. dissertation in Biology, Universiteit Antwerpen, Antwerp, Belgium.Google Scholar
Heylen, D. J. A., Madder, M. and Matthysen, E. (2010). Lack of resistance against the tick Ixodes ricinus in two related passerine bird species. International Journal for Parasitology 40, 183191.Google Scholar
Heylen, D. J. A. and Matthysen, E. (2010). Contrasting detachment strategies in two congeneric ticks (Ixodidae) parasitizing the same songbird. Parasitology 137, 661667.CrossRefGoogle ScholarPubMed
Heylen, D. J. A. and Matthysen, E. (2011 a). Differential virulence in two congeneric ticks infesting songbird nestlings. Parasitology 138, 10111021.CrossRefGoogle ScholarPubMed
Heylen, D. J. A. and Matthysen, E. (2011 b). Experimental evidence for host preference in a tick parasitizing songbird nestlings. Oikos 120, 12091216.CrossRefGoogle Scholar
Hillyard, P. D. (1996). Ticks of North-West Europe, Backhuys Publishers, London, UK.Google Scholar
Hinde, R. A. (1952). The behaviour of the Great Tit (Parus major) and some other related species. Behaviour 2, 1201.Google Scholar
Hudde, H. and Walter, G. (1988). Verbreitung und Wirtswahl der Vogelzecke Ixodes arboricola (Ixodoidea, Ixodidae) in der Bundesrepublik Deutschland. Vogelwarte 34, 201207.Google Scholar
Husby, A., Kruuk, L. E. B. and Visser, M. E. (2009). Decline in the frequency and benefits of multiple brooding in great tits as a consequence of a changing environment. Proceedings of the Royal Society of London, B 276, 18451854.Google ScholarPubMed
Lehmann, T. (1993). Ectoparasites: direct impact on host fitness. Parasitology Today 9, 813.CrossRefGoogle ScholarPubMed
Liebisch, G. (1996). Biology and life cycle of Ixodes (Pholeoixodes) arboricola Schulze and Schlottke, 1929 (Ixodidae). In Acarology IX, Vol. 1 (ed. Mitchell, R., Horn, D. J., Needham, G. R. and Welbourn, W. C.), The Ohio Biological Survey. pp. 453455.Google Scholar
Literak, I., Kocianova, E., Dusbabek, F., Martinu, J., Podzemny, P. and Sychra, O. (2007). Winter infestation of wild birds by ticks and chiggers (Acari: Ixodidae, Trombiculidae) in the Czech Republic. Parasitology Research 101, 17091711.CrossRefGoogle ScholarPubMed
Loye, J. E. and Zuk, M. (1991). Bird-Parasite Interactions: Ecology, Evolution and Behaviour, Oxford University Press, Oxford, UK.Google Scholar
Matthysen, E., Adriaensen, F. and Dhondt, A. A. (2001). Local recruitment of great and blue tits (Parus major, P. caeruleus) in relation to study plot size and degree of isolation. Ecography 24, 3342.CrossRefGoogle Scholar
Møller, A. P. (2002). Temporal change in mite abundance and its effect on barn swallow reproduction and sexual selection. Journal of Evolutionary Biology 15, 495504.CrossRefGoogle Scholar
Moore, J. (2002). Parasites and the Behavior of Animals, Oxford University Press, New York, USA.CrossRefGoogle Scholar
Naef Daenzer, B., Widmer, F. and Nuber, M. (2001). Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. Journal of Animal Ecology 70, 730738.CrossRefGoogle Scholar
Olsen, O. W. (1974). Animal Parasites: Their Life Cycles and Ecology, Third edition edn.University Park Press, Baltimore, MD, USA.Google Scholar
Osterkamp, J., Wahl, U., Schmalfuss, G. and Haas, W. (1999). Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology 185, 5967.CrossRefGoogle Scholar
Perrins, C. M. (1979). British Tits, Collins, London, UK.Google Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2 Edn.Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Price, P. W. (1980). Evolutionary Biology of Parasites, Princeton University Press, Princeton, NJ, USA.Google ScholarPubMed
Randolph, S. E. (1979). Population regulation in ticks – role of acquired resistance in natural and unnatural hosts. Parasitology 79, 141156.CrossRefGoogle ScholarPubMed
Rechav, Y., Goldberg, M. and Fielden, L. J. (1997). Evidence for attachment pheromones in the Cayenne tick (Acari: Ixodidae). Journal of Medical Entomology 34, 234237.CrossRefGoogle ScholarPubMed
Reckardt, K. and Kerth, G. (2009). Does the mode of transmission between hosts affect the host choice strategies of parasites? Implications from a field study on bat fly and wing mite infestation of Bechstein's bats. Oikos 118, 183190.CrossRefGoogle Scholar
Ribeiro, J. M. C. (1989). Role of saliva in tick host interactions. Experimental and Applied Acarology 7, 1520.CrossRefGoogle ScholarPubMed
Roulin, A., Brinkhof, M. W. G., Bize, P., Richner, H., Jungi, T. W., Bavoux, C., Boileau, N. and Burneleau, G. (2003). Which chick is tasty to parasites? The importance of host immunology vs. parasite life history. Journal of Animal Ecology 72, 7581.CrossRefGoogle Scholar
Sheldon, B. C. and Verhulst, S. (1996). Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology. Trends in Ecology and Evolution 11, 317321.CrossRefGoogle ScholarPubMed
Sonenshine, D. E. (1991). Biology of Ticks. Oxford Univerity Press, New York, USA.Google Scholar
Sonenshine, D. E. (2004). Pheromones and other semiochemicals of ticks and their use in tick control. Parasitology 129, S405S425.CrossRefGoogle ScholarPubMed
Staszewski, V., Gasparini, J., McCoy, K. D., Tveraa, T. and Boulinier, T. (2007). Evidence of an interannual effect of maternal immunization on the immune response of juveniles in a long-lived colonial bird. Journal of Animal Ecology 76, 12151223.CrossRefGoogle Scholar
Steullet, P. and Guerin, P. M. (1992). Perception of breath components by the Tropical Bont Tick, Amblyomma variegatum Fabricius (Ixodidae) .1. CO2-excited and Co2-inhibited receptors. Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology 170, 665676.CrossRefGoogle ScholarPubMed
Szabo, K., Szalmas, A., Liker, A. and Barta, Z. (2008). Adaptive host-abandonment of ectoparasites before fledging? within-brood distribution of nest mites in House Sparrow broods. Journal of Parasitology 94, 10381043.CrossRefGoogle ScholarPubMed
Tripet, F. and Richner, H. (1999). Dynamics of hen flea Ceratophyllus gallinae subpopulations in blue tit nests. Journal of Insect Behavior 12, 159174.CrossRefGoogle Scholar
Ulmanen, I., Saikku, P., Vikberg, P. and Sorjonen, J. (1977). Ixodes lividus (Acari) in Sand martin colonies in Fennoscandia. Oikos 28, 2026.CrossRefGoogle Scholar
Vaclav, R., Calero-Torralbo, M. A. and Valera, F. (2008). Ectoparasite load is linked to ontogeny and cell-mediated immunity in an avian host system with pronounced hatching asynchrony. Biological Journal of the Linnean Society 94, 463473.CrossRefGoogle Scholar
Valera, F., Hoi, H., Darolova, A. and Kristofik, J. (2004). Size versus health as a cue for host choice: a test of the tasty chick hypothesis. Parasitology 129, 5968.CrossRefGoogle Scholar
Wakelin, D. (1996). Immunity to Parasites, 2nd Edn.Cambridge University Press, Cambridge, UK.Google ScholarPubMed
Walter, G., Liebisch, A. and Streichert, J. (1979). Untersuchungen zur Biologie und Verbreitung von Zecken (Ixodoidea, Ixodidae) in Norddeutschland. Angewandte Ornithologie 5, 6573.Google Scholar
White, J., Heylen, D. and Matthysen, E. (2011). Adaptive timing of detachment in a tick parasitizing hole-nesting birds. Parasitology doi: 10.1017/S0031182011001806 published online 09 November 2011.Google Scholar
Winkel, W. (1970). Hinweise zur Art- und Altersbestimmung von Nestlingen höhlenbrütenden Vogelarten anhand ihrer Körperentwicklung. Vogelwelt 91, 5259.Google Scholar
Yunker, C. E., Peter, T., Norval, R. A. I., Sonenshine, D. E., Burridge, M. J. and Butler, J. F. (1992). Olfactory responses of adult Amblyomma hebraeum and A. variegatum (Acari, Ixodidae) to attractant chemicals in laboratory tests. Experimental and Applied Acarology 13, 295301.CrossRefGoogle Scholar