Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T19:53:32.610Z Has data issue: false hasContentIssue false

Nematode egg-shells

Published online by Cambridge University Press:  06 April 2009

David Wharton
Affiliation:
Department of Zoology, University College of Wales, Penglais, Aberystwyth, Dyfed, SY23 3DA

Summary

The transmission of parasites often involves a high mortality of free-living stages in the environment outside the host. This may be offset by a high biotic potential. In addition, adaptations of nematode eggs and larvae that ensure their survival or increase their chances of infecting a host will reduce the potential wastage rate. Increasing transmission will have an effect equivalent to increasing the fecundity of the parasite and, energetically, may be the more favourable strategy.

Type
Trends and Perspectives
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, F. L. & Levine, N. D. (1968). Effect of desiccation on the survival of the free-living stages of Trichostrongylus colubriformies. Journal of Parasitology 54, 117–28.CrossRefGoogle Scholar
Anya, A. O. (1964). Studies on the structure of the female reproductive system and egg-shell formation in Aspiculuris tetraptera Schulz (Nematoda: Oxyuroidea). Parasitology 54, 699719.CrossRefGoogle ScholarPubMed
Anya, A. O. (1976). Physiological aspects of reproduction in nematodes. Advances in Parasitology 14, 267351.CrossRefGoogle ScholarPubMed
Arthur, E. J. & Sanborn, R. L. (1969). Osmotic and ionic regulation in nematodes. In Chemical Zoology, vol. 3 (ed. Florkin, M. and Scheer, B. T.). London and New York: Academic Press.Google Scholar
Barrett, J. (1976). Studies on the induction of permeability in Ascaris lumbricoides eggs. Parasitology 73, 109–21.CrossRefGoogle ScholarPubMed
Barrett, J. (1980). Biochemistry of Parasitic Helminths. London: Macmillans.Google Scholar
Bird, A. F. & McClure, M. A. (1976). The tylenchid (Nematoda) egg-shell: structure, composition and permeability. Parasitology 72, 1928.CrossRefGoogle Scholar
Bird, A. F. & Rogers, G. E. (1965). Ultrastructural and histochemical studies of the cells producing the gelatinous matrix in Meloidogyne. Nematologica 11, 231–8.Google Scholar
Clarke, A. J. & Perry, R. N. (1980). Egg-shell permeability and the hatching of Ascaris Suum. Parasitology 80, 447–56.CrossRefGoogle ScholarPubMed
Crowe, J H. & Cooper, A. E. Jr (1971). Cryptobiosis. Scientific American 225, 30–6.CrossRefGoogle Scholar
Ellenby, C. (1968). Desiccation survival in the plant parasitic nematodes, Heterodera rostochiensis Wollenweber and Ditylenchus dipsaci (Kuhn) Filipjev. Proceedings of the Royal Society B 169, 203–13.Google Scholar
Evans, A. F. & Perry, R. N. (1976). Survival strategies in nematodes. In The Organisation of Nematodes (ed. Croll, N. A.). London and New York: Academic Press.Google Scholar
Foor, W. E. (1967). Ultrastructural aspects of oocyte development and shell formation in Ascaris lumbricoides. Journal of Parasitology 53, 1245–61.CrossRefGoogle ScholarPubMed
Grigonis, G. J. & Solomon, G. B. (1976). Capillaria hepatica: fine structure of the egg-shell. Experimental Parasitology 40, 286–97.CrossRefGoogle ScholarPubMed
Hinton, H. E. (1969). Respiratory systems of insect egg-shells. Annual Review of Entomology 14, 343–68.CrossRefGoogle ScholarPubMed
Lee, D. L. (1961). Studies on the origin of the sticky coat on the eggs of the nematode Thelastoma bulhõesi (Magalhães, 1900). Parasitology 51, 379–84.CrossRefGoogle ScholarPubMed
Lee, D. L. & Les˘t˘an, P. (1971). Oogenesis and egg-shell formation in Heterakis gallinarum (Nematoda). Journal of Zoology 164, 189–96.CrossRefGoogle Scholar
McLaren, D. J. (1973). Oogenesis and fertilisation in Dipetalonema vitae (Nematoda: Filarioidea). Parasitology 66, 465–72.CrossRefGoogle Scholar
Monné, L. & Hönig, G. (1954 a). On the properties of the egg envelopes of the parasitic nematodes Trichuris and Capillaria. Arkiv für Zoologi 6, 559–62.Google Scholar
Monné, L. & Hönig, G. (1954 b). On the properties of the egg envelopes of various parasitic nematodes. Arkiv für Zoologi 7, 261–72.Google Scholar
Neville, A. C. (1975). Biology of the Arthropod Cuticle. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Parkin, J. T. (1976). The effect of moisture supply upon the development and hatching of the eggs of Nematodirus battus. Parasitology 73, 343–54.CrossRefGoogle ScholarPubMed
Passey, R. F. & Fairbain, D. (1955). The respiration of Ascaris lumbricoides eggs. Canadian Journal of Biochemistry and Physiology 33, 1033–46.CrossRefGoogle ScholarPubMed
Poinar, G. O. (1978). Deposition of mermithid eggs in a gelatinous matrix. Nematologica 24, 135.CrossRefGoogle Scholar
Prasad, D. (1959). The effects of temperature and humidity on the free-living stages of Trichostrongylus retortaeformis. Canadian Journal of Zoology 37, 305–16.CrossRefGoogle Scholar
Rahn, H., Ar, A. & Paganelli, C. V. (1979). How bird eggs breathe. Scientific American 240, 3847.CrossRefGoogle Scholar
Rudall, K. M. (1955). The distribution of chitin and collagen. Symposium of the Society of Experimental Biology 9, 4971.Google Scholar
Simonov, A. P. & Shigina, N. G. (1972). Electron microscopy of the egg membranes of Ascaridia galli. Trudy Vsesoyuznogo Instituta Gel'mintologii im. K.I. Skryabina 19, 176–86.Google Scholar
Ubelaker, J. E. & Allison, V. F. (1975). Scanning electron microscopy of the eggs of Ascaris lumbricoides, A. suum, Toxocara canis and T. mystax. Journal of Parasitology 61, 802–7.CrossRefGoogle ScholarPubMed
Van der Gulden, W. J. I. & Van Aspert-van Erp, A. J. M. (1976). Syphacia muris: water permeability of eggs and its effect on hatching. Experimental Parasitology 39, 40–4.CrossRefGoogle ScholarPubMed
Waller, P. J. (1971). Structural differences in the egg envelopes of Haemonchus contortus and Trichostrongylus colubriformis (Nematoda: Trichostrongylidae). Parasitology 62, 157–60.CrossRefGoogle ScholarPubMed
Waller, P. J. & Donald, A. D. (1970). The response to desiccation of eggs of Trichostrongylus colubriformis and Haemonchus contortus (Nematoda: Trichostrongylidae). Parasitology 61, 195204.CrossRefGoogle ScholarPubMed
Wharton, D. A. (1979 a). Oogenesis and egg-shell formation in Aspiculuris tetraptera Schulz (Nematoda: Oxyuroidea). Parasitology 78, 131–43.CrossRefGoogle ScholarPubMed
Wharton, D. A. (1979 b). The structure of the egg-shell of Aspiculuris tetraptera Schulz (Nematoda: Oxyurida). Parasitology 78, 145–54.CrossRefGoogle Scholar
Wharton, D. A. (1979 c). The structure and formation of the egg-shell of Hammerschmidtiella diesingi Hammerschmidt (Nematoda: Oxyuroidea). Parasitology 79, 112.CrossRefGoogle Scholar
Wharton, D. A. (1979 d). The structure and formation of the egg-shell of Syphacia obvelata Rudolphi (Nematoda: Oxyurida). Parasitology 79, 1328.CrossRefGoogle ScholarPubMed
Wharton, D. A. (1979 e). The structure of the egg-shell of Porrocaecum ensicaudatum (Nematoda: Ascaridida). International Journal for Parasitology 9, 127–31.CrossRefGoogle Scholar
Wharton, D. A. (1979 f). Ascaris sp.: water loss during desiccation of embryonating eggs. Experimental Parasitology 48, 398406.CrossRefGoogle ScholarPubMed
Wharton, D. A. (1980). Studies on the function of the oxyurid egg-shell. Parasitology 81, 103–13.CrossRefGoogle Scholar
Wharton, D. A. & Jenkins, T. (1978). Structure and chemistry of the egg-shell of a nematode (Trichuris suis). Tissue and Cell 10, 427–40.CrossRefGoogle ScholarPubMed
Yuen, P. H. (1971). Electron microscope studies on Aphelenchoides blastophthorus (Nematoda). II. Oogenesis. Nematologica 17, 1322.CrossRefGoogle Scholar