Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T02:34:39.253Z Has data issue: false hasContentIssue false

MVA ROP2 vaccinia virus recombinant as a vaccine candidate for toxoplasmosis

Published online by Cambridge University Press:  16 April 2004

J. L. ROQUE-RESÉNDIZ
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, National Autonomous University of Mexico, Ciudad Universitaria, Mexico 04510, Mexico, D.F.
R. ROSALES
Affiliation:
Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, National Autonomous University of Mexico, Ciudad Universitaria, Mexico 04510, Mexico, D.F.
P. HERION
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, National Autonomous University of Mexico, Ciudad Universitaria, Mexico 04510, Mexico, D.F.

Abstract

Toxoplasma gondii is the aetiological agent of toxoplasmosis and is the most frequent and best known of the parasitic diseases. In the United States, a serological survey from the Third National Health and Nutrition Examination Survey found that an estimated 23% of adolescents and adults have laboratory evidence of infection with T. gondii. Although toxoplasmosis is asymptomatic or shows self-limited symptoms in adults, in pregnant women infections can cause severe health problems to the fetus if the parasites are transmitted. Also, in immunodeficient patients, chronic infection with T. gondii can reactivate and produce encephalitis, which is frequently lethal. In addition, in veterinary medicine, T. gondii infection is of economic importance due to abortion and neonatal loss in sheep and goats. Recently, the development of vaccines against toxoplasmosis has progressed considerably. The live attenuated S48 strain of Toxoplasma has been broadly used for veterinary purposes. DNA vaccines containing the full-length of SAG1/P30, ROP2 or ROP 1 genes have proved to be a promising candidate to induce protection against toxoplasmosis. Viral vectors have proved to be the best candidates for vaccination in different diseases. A recombinant Herpes virus carrying the ROP2 gene is able to induce protective immunity in cats. In the present work we describe the potential of the MVA ROP2 recombinant vaccinia virus as a vaccine against toxoplasmosis. MVA ROP2 induces antibodies against the ROP2 protein in similar amount and types as the thermo-sensible strain ts-4 of T. gondii, which is able to fully protect mice against challenge with the virulent RH strain of T. gondii. Also, the life-span of mice is increased in MVA ROP2 vaccinated animals. We conclude that MVA ROP2 vaccine can possibly generate an immune response, which could be useful in protection against toxoplasmosis.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AMARA, R., VILLINGER, F., STAPRANS, S. I., ALTMAN, J. D., MONTEFIORI, D. C., KOZYR, N. L., XU, Y., WYATT, L. S., EARL, P. L., HERNDON, J. G., McCLURE, H. M., MOSS, B. & ROBINSON, H. L. (2002). Different patterns of immune responses but similar control of a simian-human immunodeficiency virus 89.9P mucosal challenge by modified vaccinia virus ankara (MVA) and DNA/MVA vaccines. Journal of Virology 76, 76257631.Google Scholar
ANGUS, C. W., KLIVINGTON-EVANS, D., DUBEY, J. P. & KOVACS, J. A. (2000). Immunization with a DNA plasmid encoding the SAG1 (P30) protein of Toxoplasma gondii is immunogenic and protective in rodents. Journal of Infectious Diseases 181, 317324.CrossRefGoogle Scholar
BHOPALE, G. M. (2003). Development of a vaccine for toxoplasmosis. Current status. Microbes and Infection 5, 457462.CrossRefGoogle Scholar
BINNS, M. M. & SMITH, G. L. (1993). Recombinant Poxvirus. ACR Press, Boca Raton, Florida.
CANN, A. J. (1997). Principles of Molecular Virology. Academic Press, San Diego.
COUPER, K. N., NIELSEN, H. V., ESKILD, P., ROBERTS, F., ROBERTS, C. W. & ALEXANDER, J. (2003). DNA vaccination with the immunodominant tachyzoite surface antigen (SAG-1) protects against adult acquired Toxoplasma gondii infection but does not prevent maternofoetal transmission. Vaccine 21, 28132820.CrossRefGoogle Scholar
COUVREUR, G., SADAK, A., FORTIER, B. & DUBREMETZ, J. F. (1988). Surface antigens of Toxoplasma gondii. Parasitology 97, 110.CrossRefGoogle Scholar
FACHADO, A., RODRIGUEZ, A., MOLINA, J., SILVÉRIO, J., MARINO, A., PINTO, L., ANGEL, S., INFANTE, J., TRAUB-CSEKO, Y., AMENDOEIRA, R. & LANNES-VIEIRA, J. (2003). Long-term protective immune response elicited by vaccination with an expression genomic library of Toxoplasma gondii. Infection and Immunity 71, 54075411.CrossRefGoogle Scholar
FATOOHI, A. F., COZON, G. J. N., GREENLAND, T., FERRANDIZ, J., BIENVENUE, J., PICOT, S. & PEYRON, F. (2002). Cellular immune responses to recombinant antigens in pregnant women chronically infected with Toxoplasma gondii. Clinical and Diagnostic Laboratory Immunology 9, 704707.CrossRefGoogle Scholar
FENNER, F., HENDERSON, D. A., ARITA, I., JEZEK, Z. & LADNYI, I. D. (1988). Smallpox and its Erradication. WHO: Geneva.
FRANCOISE, J., JADIN, J., WERY, M. & VAN DE CASTEELE, J. (1963). Etude expérimentale du traitement de la toxoplasmose. Bulletin Academic Research Medical 7, 459485.Google Scholar
GAZZINELLI, R., XU, Y., HIENY, S., CHEEVER, A. & SHER, A. (1992). Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. Journal of Immunology 149, 175180.Google Scholar
HAUMONT, M., DELHAYE, L., GARCIA, L., JURADO, M., MAZZA, P., DAMINET, V., VERLANT, V., BOLLEN, A., BIEMANS, R. & JACQUET, A. (2000). Protective immunity against congenital toxoplasmosis with recombinant SAG1 protein in a guinea pig model. Infection and Immunity 68, 49484953.CrossRefGoogle Scholar
JACKSON, M. H. & HUTCHISON, W. M. (1989). The prevalence and source of Toxoplasma infection in the environment. Advances in Parasitology 28, 55105.CrossRefGoogle Scholar
KUZNETSOV, V. A., MAKALKIN, I. A., TAYLOR, M. A. & PERELSON, A. S. (1994). Non-linear dymamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bulletin of Mathematical Biology 56, 295321.CrossRefGoogle Scholar
LEVINE, A. J. (1994). The origins of the small DNA tumor viruses. Advances in Cancer Research 55, 150158.CrossRefGoogle Scholar
LEYVA, R., HERION, P. & SAAVEDRA, R. (2001). Genetic immunization with plasmid DNA coding for the ROP2 protein of Toxoplasma gondii. Parasitology Research 87, 7079.CrossRefGoogle Scholar
LUNDE, M. N. & JACOBS, L. (1983). Antigenic differences between endozoites and cystozoites of Toxoplasma gondii. Journal of Parasitology 69, 806808.CrossRefGoogle Scholar
MISHIMA, M., XUAN, X., YOKOYAMA, N., IGARASHI, I., FUJISAKI, K., NAGASAWA, I. & MIKAMI, T. (2002). Recombinant feline herpesvirus type 1 expressing Toxoplasma gondii ROP2 antigen inducible protective immunity in cats. Parasitology Research 88, 144149.CrossRefGoogle Scholar
MONTOYA, J. G., LOWE, K. E., CLAYBERGER, C., MOODY, D., DO, D., REMINGTON, S., TALIB, S. & SUBAUSTE, C. S. (1996). Human CD4+ and CD8+ T lymphocytes are both cytotoxic to Toxoplasma gondii infected cells. Infection Immunology 64, 176181.Google Scholar
PELLOUX, H., WEISS, J., SIMON, J., MUET, F., FRICKER-HIDALGO, H., GOULLIER-FLEURET, A. & AMBROISE-THOMAS, P. (1996). A new set of primers for the detection of Toxoplasma gondii in amniotic fluid using polymerase chain reaction. FEMS Microbiology Letters 138, 1115.CrossRefGoogle Scholar
PFEFFERKORN, E. R. & PFEFFERKORN, L. C. (1976). Toxoplasma gondii isolation and preliminary characterization of temperature-sensitive mutants. Experimental Parasitology 39, 365376.CrossRefGoogle Scholar
SAAVEDRA, R., BECERRIL, M., DUBEAUX, C., LIPPENS, R., DE VOS, M.-J., HERION, P. & BOLLEN, A. (1996). Epitopes recognized by human T lymphocytes in the ROP2 protein antigen of Toxoplasma gondii. Infection and Immunity 64, 38583862.Google Scholar
SABIN, A. B. (1941). Toxoplasmic encephalitis in children. Journal of the American Medical Association 116, 801.CrossRefGoogle Scholar
SADAK, A., TAGHY, Z., FORTIER, B. & DUBREMETZ, J.-F. (1988). Characterization of a family of rhoptry proteins of Toxoplasma gondii. Molecular and Biochemical Parasitology 29, 203211.CrossRefGoogle Scholar
SUBAUSTE, C. S., KONIARIS, A. H. & REMINGTON, J. S. (1991). Murine CD8+ cytotoxic T lymphocytes lyse Toxoplasma gondii infected cells. Journal of Immunology 147, 39553959.Google Scholar
SUTTER, G. & MOSS, B. (1992). Non replicating vaccinia vector efficiently expresses recombinant genes. Proceedings of the National Academy of Sciences, USA 89, 1084710851.CrossRefGoogle Scholar
THOMAS, P. A. (2001). Parasitic diseases and immunodeficiencies. Parasitology 122, S65S71.Google Scholar
VALADEZ, G., SUTTER, G., JOSE, M., GARCÍA-CARRANCA, A., ERFLE, V., MORENO, M., MERCHANT, H. & ROSALES, R. (2000). Human tumor growth is inhibited by vaccinia virus carrying the E2 gene of bovine papillomavirus. Cancer 88, 1650.Google Scholar